Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(5): 794-814.e30, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182466

RESUMEN

Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Cardiopatías Congénitas , Proteínas Nucleares/metabolismo , Oxidorreductasas/metabolismo , Factores de Transcripción , Animales , Cardiopatías Congénitas/genética , Ratones , Mutación , Proteómica , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
2.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212464

RESUMEN

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


Asunto(s)
COVID-19 , SARS-CoV-2 , Femenino , Masculino , Humanos , Síndrome Post Agudo de COVID-19 , Linfocitos T CD8-positivos , Inmunidad Humoral , Anticuerpos Antivirales , Inflamación
3.
Cell ; 182(3): 754-769.e18, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32610082

RESUMEN

To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica/genética , Corteza Prefrontal/embriología , Telencéfalo/embriología , Animales , Trastorno Autístico/genética , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Eucromatina/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Ontología de Genes , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Ratones , Ratones Transgénicos , Motivos de Nucleótidos , Mutación Puntual , Corteza Prefrontal/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal , Telencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Immunol ; 21(5): 513-524, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284594

RESUMEN

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Perfilación de la Expresión Génica/métodos , Microglía/fisiología , Esclerosis Múltiple/genética , Inflamación Neurogénica/genética , Animales , Antioxidantes/uso terapéutico , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Redes Reguladoras de Genes , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunidad Innata , Isoxazoles/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Esclerosis Múltiple/tratamiento farmacológico , Inflamación Neurogénica/tratamiento farmacológico , Estrés Oxidativo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
6.
Nature ; 602(7895): 129-134, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082446

RESUMEN

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo , Miocitos Cardíacos/citología , Factores de Transcripción/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Embrión de Mamíferos , Epigénesis Genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Miocardio/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
7.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36994838

RESUMEN

Transcriptional networks governing cardiac precursor cell (CPC) specification are incompletely understood owing, in part, to limitations in distinguishing CPCs from non-cardiac mesoderm in early gastrulation. We leveraged detection of early cardiac lineage transgenes within a granular single-cell transcriptomic time course of mouse embryos to identify emerging CPCs and describe their transcriptional profiles. Mesp1, a transiently expressed mesodermal transcription factor, is canonically described as an early regulator of cardiac specification. However, we observed perdurance of CPC transgene-expressing cells in Mesp1 mutants, albeit mislocalized, prompting us to investigate the scope of the role of Mesp1 in CPC emergence and differentiation. Mesp1 mutant CPCs failed to robustly activate markers of cardiomyocyte maturity and crucial cardiac transcription factors, yet they exhibited transcriptional profiles resembling cardiac mesoderm progressing towards cardiomyocyte fates. Single-cell chromatin accessibility analysis defined a Mesp1-dependent developmental breakpoint in cardiac lineage progression at a shift from mesendoderm transcriptional networks to those necessary for cardiac patterning and morphogenesis. These results reveal Mesp1-independent aspects of early CPC specification and underscore a Mesp1-dependent regulatory landscape required for progression through cardiogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Epigenómica , Miocitos Cardíacos , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
8.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35061545

RESUMEN

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Ciclo Celular , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Ratas , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
9.
Circulation ; 146(10): 770-787, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35938400

RESUMEN

BACKGROUND: GATA4 (GATA-binding protein 4), a zinc finger-containing, DNA-binding transcription factor, is essential for normal cardiac development and homeostasis in mice and humans, and mutations in this gene have been reported in human heart defects. Defects in alternative splicing are associated with many heart diseases, yet relatively little is known about how cell type- or cell state-specific alternative splicing is achieved in the heart. Here, we show that GATA4 regulates cell type-specific splicing through direct interaction with RNA and the spliceosome in human induced pluripotent stem cell-derived cardiac progenitors. METHODS: We leveraged a combination of unbiased approaches including affinity purification of GATA4 and mass spectrometry, enhanced cross-linking with immunoprecipitation, electrophoretic mobility shift assays, in vitro splicing assays, and unbiased transcriptomic analysis to uncover GATA4's novel function as a splicing regulator in human induced pluripotent stem cell-derived cardiac progenitors. RESULTS: We found that GATA4 interacts with many members of the spliceosome complex in human induced pluripotent stem cell-derived cardiac progenitors. Enhanced cross-linking with immunoprecipitation demonstrated that GATA4 also directly binds to a large number of mRNAs through defined RNA motifs in a sequence-specific manner. In vitro splicing assays indicated that GATA4 regulates alternative splicing through direct RNA binding, resulting in functionally distinct protein products. Correspondingly, knockdown of GATA4 in human induced pluripotent stem cell-derived cardiac progenitors resulted in differential alternative splicing of genes involved in cytoskeleton organization and calcium ion import, with functional consequences associated with the protein isoforms. CONCLUSIONS: This study shows that in addition to its well described transcriptional function, GATA4 interacts with members of the spliceosome complex and regulates cell type-specific alternative splicing via sequence-specific interactions with RNA. Several genes that have splicing regulated by GATA4 have functional consequences and many are associated with dilated cardiomyopathy, suggesting a novel role for GATA4 in achieving the necessary cardiac proteome in normal and stress-responsive conditions.


Asunto(s)
Factor de Transcripción GATA4 , Células Madre Pluripotentes Inducidas , Empalme Alternativo , Animales , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Corazón , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , ARN/genética , ARN/metabolismo
10.
Development ; 146(19)2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30814119

RESUMEN

Chromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM-associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit gene Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunopurification with mass spectrometry, we have determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, identifying several cell-type specific subunits. We focused on the CP- and cardiomyocyte (CM)-enriched subunits BAF60c (SMARCD3) and BAF170 (SMARCC2). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, and in CMs their loss results in broadly deregulated cardiac gene expression. BRG1, BAF60c and BAF170 modulate chromatin accessibility, to promote accessibility at activated genes while closing chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition, and BAF170 loss leads to retention of BRG1 at CP-specific sites. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby participates in directing temporal gene expression programs in cardiogenesis.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Complejos Multiproteicos/metabolismo , Organogénesis/genética , Subunidades de Proteína/metabolismo , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , ADN Helicasas/metabolismo , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Subunidades de Proteína/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
11.
BMC Med ; 20(1): 158, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35421980

RESUMEN

BACKGROUND: Endometriosis is a chronic, estrogen-dependent disorder where inflammation contributes to disease-associated symptoms of pelvic pain and infertility. Immune dysfunction includes insufficient immune lesion clearance, a pro-inflammatory endometrial environment, and systemic inflammation. Comprehensive understanding of endometriosis immune pathophysiology in different hormonal milieu and disease severity has been hampered by limited direct characterization of immune populations in endometrium, blood, and lesions. Simultaneous deep phenotyping at single-cell resolution of complex tissues has transformed our understanding of the immune system and its role in many diseases. Herein, we report mass cytometry and high dimensional analyses to study immune cell phenotypes, abundance, activation states, and functions in endometrium and blood of women with and without endometriosis in different cycle phases and disease stages. METHODS: A case-control study was designed. Endometrial biopsies and blood (n = 60 total) were obtained from women with (n = 20, n = 17, respectively) and without (n = 14, n = 9) endometriosis in the proliferative and secretory cycle phases of the menstrual cycle. Two mass cytometry panels were designed: one broad panel and one specific for mononuclear phagocytic cells (MPC), and all samples were multiplexed to characterize both endometrium and blood immune composition at unprecedented resolution. We combined supervised and unsupervised analyses to finely define the immune cell subsets with an emphasis on MPC. Then, association between cell types, protein expression, disease status, and cycle phase were performed. RESULTS: The broad panel highlighted a significant modification of MPC in endometriosis; thus, they were studied in detail with an MPC-focused panel. Endometrial CD91+ macrophages overexpressed SIRPα (phagocytosis inhibitor) and CD64 (associated with inflammation) in endometriosis, and they were more abundant in mild versus severe disease. In blood, classical and intermediate monocytes were less abundant in endometriosis, whereas plasmacytoid dendritic cells and non-classical monocytes were more abundant. Non-classical monocytes were higher in severe versus mild disease. CONCLUSIONS: A greater inflammatory phenotype and decreased phagocytic capacity of endometrial macrophages in endometriosis are consistent with defective clearance of endometrial cells shed during menses and in tissue homeostasis, with implications in endometriosis pathogenesis and pathophysiology. Different proportions of monocytes and plasmacytoid dendritic cells in blood from endometriosis suggest systemically aberrant functionality of the myeloid system opening new venues for the study of biomarkers and therapies for endometriosis.


Asunto(s)
Endometriosis , Estudios de Casos y Controles , Endometriosis/metabolismo , Endometrio/metabolismo , Endometrio/patología , Femenino , Humanos , Inmunofenotipificación , Inflamación/metabolismo
12.
Brain ; 144(8): 2291-2301, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34426831

RESUMEN

Extrinsic inhibitors at sites of blood-brain barrier disruption and neurovascular damage contribute to remyelination failure in neurological diseases. However, therapies to overcome the extrinsic inhibition of remyelination are not widely available and the dynamics of glial progenitor niche remodelling at sites of neurovascular dysfunction are largely unknown. By integrating in vivo two-photon imaging co-registered with electron microscopy and transcriptomics in chronic neuroinflammatory lesions, we found that oligodendrocyte precursor cells clustered perivascularly at sites of limited remyelination with deposition of fibrinogen, a blood coagulation factor abundantly deposited in multiple sclerosis lesions. By developing a screen (OPC-X-screen) to identify compounds that promote remyelination in the presence of extrinsic inhibitors, we showed that known promyelinating drugs did not rescue the extrinsic inhibition of remyelination by fibrinogen. In contrast, bone morphogenetic protein type I receptor blockade rescued the inhibitory fibrinogen effects and restored a promyelinating progenitor niche by promoting myelinating oligodendrocytes, while suppressing astrocyte cell fate, with potent therapeutic effects in chronic models of multiple sclerosis. Thus, abortive oligodendrocyte precursor cell differentiation by fibrinogen is refractory to known promyelinating compounds, suggesting that blockade of the bone morphogenetic protein signalling pathway may enhance remyelinating efficacy by overcoming extrinsic inhibition in neuroinflammatory lesions with vascular damage.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Oligodendroglía/efectos de los fármacos , Remielinización/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Barrera Hematoencefálica/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratones , Ratones Transgénicos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Médula Espinal/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(36): 17753-17758, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431531

RESUMEN

We present data from a nationally representative 2017 survey of American adults. For heterosexual couples in the United States, meeting online has become the most popular way couples meet, eclipsing meeting through friends for the first time around 2013. Moreover, among the couples who meet online, the proportion who have met through the mediation of third persons has declined over time. We find that Internet meeting is displacing the roles that family and friends once played in bringing couples together.


Asunto(s)
Amigos , Relaciones Interpersonales , Medios de Comunicación Sociales , Adulto , Femenino , Humanos , Masculino , Estados Unidos
14.
Int Tinnitus J ; 26(1): 68-74, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35861461

RESUMEN

OBJECTIVES: To study the prevalence of tinnitus, its characteristic and its association with anxiety and depression among active-duty army personnel and veterans. This study also wants to determine the correlation of Tinnitus Handicap Inventory (THI) with Hospital Anxiety Depression Scale (HADS) among active-duty army personnel and veterans at Hospital Angkatan Tentera Tuanku Mizan. MATERIALS AND METHODS: A cross-sectional study was conducted at the Otorhinolaryngology Head and Neck Surgery Department of Hospital Angkatan Tentera Tuanku Mizan from January 2020 until June 2021, involving active-duty army personnel and veterans with at least 3 years of service. Those patients who fulfilled inclusion and exclusion criteria were recruited. Their feedback was recorded based on Malay version of Tinnitus Handicap Inventory (THI) and Malay version of Hospital Anxiety Depression Scale (HADS). RESULTS: 106 subjects responded to our questionnaires, (51 active-duty army personnel and 55 veterans) in which 4.7% (n=5) reported to have anxiety and none had depression. Overall mean score for Total THI was 27.66, suggesting that majority of our subjects only felt mild handicap due to their tinnitus. Individual THI subdomain mean scores shows that the functional subdomain (17.79) affects subjects the most as compared to the emotional (5.7) and catastrophic scores (4.21). CONCLUSION: Tinnitus can occur in all degrees of hearing loss, and it is associated with poor functional THI scores. Tinnitus is associated with anxiety but not depression among army personnel. These findings suggest that tinnitus should be addressed by healthcare providers in the military in order to maximise function and Quality of Life (QOL) among the nation's military personnel.


Asunto(s)
Personal Militar , Acúfeno , Veteranos , Ansiedad/complicaciones , Ansiedad/diagnóstico , Ansiedad/epidemiología , Estudios Transversales , Hospitales , Humanos , Malasia/epidemiología , Calidad de Vida , Encuestas y Cuestionarios , Acúfeno/complicaciones , Acúfeno/diagnóstico , Acúfeno/epidemiología
15.
Development ; 144(7): 1235-1241, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28351867

RESUMEN

Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Elementos de Facilitación Genéticos , Ratones Transgénicos , Multimerización de Proteína
16.
Brief Bioinform ; 18(3): 441-450, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27169896

RESUMEN

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is an important tool for studying gene regulatory proteins, such as transcription factors and histones. Peak calling is one of the first steps in the analysis of these data. Peak calling consists of two sub-problems: identifying candidate peaks and testing candidate peaks for statistical significance. We surveyed 30 methods and identified 12 features of the two sub-problems that distinguish methods from each other. We picked six methods GEM, MACS2, MUSIC, BCP, Threshold-based method (TM) and ZINBA] that span this feature space and used a combination of 300 simulated ChIP-seq data sets, 3 real data sets and mathematical analyses to identify features of methods that allow some to perform better than the others. We prove that methods that explicitly combine the signals from ChIP and input samples are less powerful than methods that do not. Methods that use windows of different sizes are more powerful than the ones that do not. For statistical testing of candidate peaks, methods that use a Poisson test to rank their candidate peaks are more powerful than those that use a Binomial test. BCP and MACS2 have the best operating characteristics on simulated transcription factor binding data. GEM has the highest fraction of the top 500 peaks containing the binding motif of the immunoprecipitated factor, with 50% of its peaks within 10 base pairs of a motif. BCP and MUSIC perform best on histone data. These findings provide guidance and rationale for selecting the best peak caller for a given application.


Asunto(s)
Análisis de Secuencia de ADN , Algoritmos , Sitios de Unión , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción
17.
J Cardiovasc Magn Reson ; 19(1): 50, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676061

RESUMEN

BACKGROUND: Myocardial hemorrhage is a frequent complication following reperfusion in acute myocardial infarction and is predictive of adverse outcomes. However, it remains unsettled whether hemorrhage is simply a marker of a severe initial ischemic insult or directly contributes to downstream myocardial damage. Our objective was to evaluate the contribution of hemorrhage towards inflammation, microvascular obstruction and infarct size in a novel porcine model of hemorrhagic myocardial infarction using cardiovascular magnetic resonance (CMR). METHODS: Myocardial hemorrhage was induced via direct intracoronary injection of collagenase in a novel porcine model of ischemic injury. Animals (N = 27) were subjected to coronary balloon occlusion followed by reperfusion and divided into three groups (N = 9/group): 8 min ischemia with collagenase (+HEM); 45 min infarction with saline (I-HEM); and 45 min infarction with collagenase (I+HEM). Comprehensive CMR was performed on a 3 T scanner at baseline and 24 h post-intervention. Cardiac function was quantified by cine imaging, edema/inflammation by T2 mapping, hemorrhage by T2* mapping and infarct/microvascular obstruction size by gadolinium enhancement. Animals were subsequently sacrificed and explanted hearts underwent histopathological assessment for ischemic damage and inflammation. RESULTS: At 24 h, the +HEM group induced only hemorrhage, the I-HEM group resulted in a non-hemorrhagic infarction, and the I+HEM group resulted in infarction and hemorrhage. Notably, the I+HEM group demonstrated greater hemorrhage and edema, larger infarct size and higher incidence of microvascular obstruction. Interestingly, hemorrhage alone (+HEM) also resulted in an observable inflammatory response, similar to that arising from a mild ischemic insult (I-HEM). CMR findings were in good agreement with histological staining patterns. CONCLUSIONS: Hemorrhage is not simply a bystander, but an active modulator of tissue response, including inflammation and microvascular and myocardial damage beyond the initial ischemic insult. A mechanistic understanding of the pathophysiology of reperfusion hemorrhage will potentially aid better management of high-risk patients who are prone to adverse long-term outcomes.


Asunto(s)
Hemorragia/diagnóstico por imagen , Imagen por Resonancia Cinemagnética , Infarto del Miocardio/diagnóstico por imagen , Miocarditis/diagnóstico por imagen , Miocardio/patología , Animales , Medios de Contraste/administración & dosificación , Circulación Coronaria , Modelos Animales de Enfermedad , Edema Cardíaco/diagnóstico por imagen , Edema Cardíaco/patología , Edema Cardíaco/fisiopatología , Femenino , Gadolinio DTPA/administración & dosificación , Hemorragia/patología , Hemorragia/fisiopatología , Microcirculación , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocarditis/patología , Miocarditis/fisiopatología , Valor Predictivo de las Pruebas , Sus scrofa , Factores de Tiempo
18.
J Cardiovasc Magn Reson ; 17: 106, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620277

RESUMEN

BACKGROUND: Distal coronary embolization (DCE) of thrombotic material occurs frequently during percutaneous interventions for acute myocardial infarction and can alter coronary flow grades. The significance of DCE on infarct size and myocardial function remains unsettled. The aims of this study were to evaluate the effects of DCE sufficient to cause no-reflow on infarct size, cardiac function and ventricular remodeling in a porcine acute myocardial infarction model. METHODS AND RESULTS: Female Yorkshire pigs underwent 60 min balloon occlusion of the left anterior descending coronary artery followed by reperfusion and injection of either microthrombi (prepared from autologous porcine blood) sufficient to cause no-reflow (DCE), or saline (control). Animals were sacrificed at 3 h (n = 5), 3 days (n = 20) or 6 weeks (n = 20) post-AMI. Cardiovascular magnetic resonance (CMR), serum troponin-I, and cardiac gelatinase (MMP) and survival kinase (Akt) activities were assessed. At 3d, DCE increased infarct size (CMR: 18.8% vs. 14.5%, p = 0.04; serum troponin-I: 13.3 vs. 6.9 ng/uL, p < 0.05) and MMP-2 activity levels (0.81 vs. 0.49, p = 0.002), with reduced activation of Akt (0.06 versus 0.26, p = 0.02). At 6 weeks, there were no differences in infarct size, ventricular volume or ejection fraction between the two groups, although infarct transmurality (70% vs. 57%, p< 0.04) and ventricular thinning (percent change in mid anteroseptal wall thickness:-25.6% vs. 0.7%, p = 0.03) were significantly increased in the DCE group. CONCLUSIONS: DCE increased early infarct size, but without affecting later infarct size, cardiac function or ventricular volumes. The significance of the later remodelling changes (ventricular thinning and transmurality) following DCE, possibly due to changes in MMP-2 activity and Akt activation, merits further study.


Asunto(s)
Trombosis Coronaria/patología , Embolia/patología , Infarto del Miocardio/patología , Miocardio/patología , Fenómeno de no Reflujo/patología , Remodelación Ventricular , Angioplastia Coronaria con Balón , Animales , Biomarcadores/sangre , Biopsia , Angiografía Coronaria , Trombosis Coronaria/sangre , Trombosis Coronaria/fisiopatología , Modelos Animales de Enfermedad , Embolia/sangre , Embolia/fisiopatología , Femenino , Imagen por Resonancia Cinemagnética , Metaloproteinasa 2 de la Matriz/metabolismo , Infarto del Miocardio/sangre , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Fenómeno de no Reflujo/sangre , Fenómeno de no Reflujo/fisiopatología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Factores de Tiempo , Troponina I/sangre
19.
Am Sociol Rev ; 79(6): 1088-1121, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25535409

RESUMEN

Adolescent societies-whether arising from weak, short-term classroom friendships or from close, long-term friendships-exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time.

20.
J Community Pract ; 32(2): 212-237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883275

RESUMEN

This article demonstrates how digital information and communication technologies (ICTs) (Zoom/WhatsApp) unexpectedly and counterintuitively proved to be valuable tools for community-engaged health research when, in the context of the COVID-19 pandemic, they were integrated into a research study testing a peer support group intervention with female immigrants from Mexico. Because of pandemic restrictions, we changed the study protocol to hold meetings remotely via Zoom rather than in person as originally planned. Because we recognized that this would lack some opportunities for participants to interact and develop relationships, we created a WhatsApp chat for each group. Despite challenges for participants to use ICTs and participant-stated preference for in-person meetings, the results demonstrated that participants overwhelmingly endorsed these technologies as promoting access, participation, engagement, and satisfaction. Zoom/WhatsApp created a valuable environment both as a method for conducting research with this population, but also as part of the intervention for immigrant women to support and learn from each other. ICT adaptations have now permanently changed the way we conduct community-engaged health research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA