Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 21(11): 13522-32, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736605

RESUMEN

A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without narrow spectral filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.

2.
Phys Rev Lett ; 107(11): 113603, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-22026667

RESUMEN

Quantum phenomena present in many experiments signify nonclassical behavior, but do not always imply superior performance. Quantifying the enhancement achieved from quantum behavior needs careful analysis of the resources involved. We analyze the case of parameter estimation using an optical interferometer, where increased precision can in principle be achieved using quantum probe states. Common performance measures are examined and some are shown to overestimate the improvement. For the simplest experimental case we compare the different measures and exhibit this overestimation explicitly. We give the preferred analysis of these experiments and calculate benchmark values for experimental parameters necessary to realize a precision enhancement. Our analysis shows that unambiguous real-world enhancements in optical quantum metrology with fixed photon number are yet to be attained.

3.
Opt Express ; 17(16): 13516-25, 2009 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-19654759

RESUMEN

Scalable photonic quantum technologies are based on multiple nested interferometers. To realize this architecture, integrated optical structures are needed to ensure stable, controllable, and repeatable operation. Here we show a key proof-of-principle demonstration of an externallycontrolled photonic quantum circuit based upon UV-written waveguide technology. In particular, we present non-classical interference of photon pairs in a Mach-Zehnder interferometer constructed with X couplers in an integrated optical circuit with a thermo-optic phase shifter in one of the interferometer arms.


Asunto(s)
Interferometría/instrumentación , Dispositivos Ópticos , Refractometría/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Modelos Teóricos , Fotones , Proyectos Piloto , Dispersión de Radiación , Integración de Sistemas
4.
Science ; 339(6121): 798-801, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23258407

RESUMEN

Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmarked our QBSM with three and four photons and analyzed sources of sampling inaccuracy. Scaling up to larger devices could offer the first definitive quantum-enhanced computation.

5.
Nat Commun ; 4: 1356, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23322044

RESUMEN

Increasing the complexity of quantum photonic devices is essential for many optical information processing applications to reach a regime beyond what can be classically simulated, and integrated photonics has emerged as a leading platform for achieving this. Here we demonstrate three-photon quantum operation of an integrated device containing three coupled interferometers, eight spatial modes and many classical and nonclassical interferences. This represents a critical advance over previous complexities and the first on-chip nonclassical interference with more than two photonic inputs. We introduce a new scheme to verify quantum behaviour, using classically characterised device elements and hierarchies of photon correlation functions. We accurately predict the device's quantum behaviour and show operation inconsistent with both classical and bi-separable quantum models. Such methods for verifying multiphoton quantum behaviour are vital for achieving increased circuit complexity. Our experiment paves the way for the next generation of integrated photonic quantum simulation and computing devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA