Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 152(2): 500-15, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20007449

RESUMEN

Data generation is no longer the limiting factor in advancing biological research. In addition, data integration, analysis, and interpretation have become key bottlenecks and challenges that biologists conducting genomic research face daily. To enable biologists to derive testable hypotheses from the increasing amount of genomic data, we have developed the VirtualPlant software platform. VirtualPlant enables scientists to visualize, integrate, and analyze genomic data from a systems biology perspective. VirtualPlant integrates genome-wide data concerning the known and predicted relationships among genes, proteins, and molecules, as well as genome-scale experimental measurements. VirtualPlant also provides visualization techniques that render multivariate information in visual formats that facilitate the extraction of biological concepts. Importantly, VirtualPlant helps biologists who are not trained in computer science to mine lists of genes, microarray experiments, and gene networks to address questions in plant biology, such as: What are the molecular mechanisms by which internal or external perturbations affect processes controlling growth and development? We illustrate the use of VirtualPlant with three case studies, ranging from querying a gene of interest to the identification of gene networks and regulatory hubs that control seed development. Whereas the VirtualPlant software was developed to mine Arabidopsis (Arabidopsis thaliana) genomic data, its data structures, algorithms, and visualization tools are designed in a species-independent way. VirtualPlant is freely available at www.virtualplant.org.


Asunto(s)
Sistemas de Administración de Bases de Datos , Genómica , Plantas/genética , Biología de Sistemas , Biología Computacional/métodos , Bases de Datos Genéticas , Redes Reguladoras de Genes , Genes de Plantas , Genoma de Planta , Análisis de Secuencia por Matrices de Oligonucleótidos , Interfaz Usuario-Computador
2.
Artículo en Inglés | MEDLINE | ID: mdl-24772375

RESUMEN

We present a fast pairwise RNA sequence alignment method using structural information, named R-PASS (RNA Pairwise Alignment of Structure and Sequence), which shows good accuracy on sequences with low sequence identity and significantly faster than alternative methods. The method begins by representing RNA secondary structure as a set of structure motifs. The motifs from two RNAs are then used as input into a bipartite graph-matching algorithm, which determines the structure matches. The matches are then used as constraints in a constrained dynamic programming sequence alignment procedure. The R-PASS method has an O(nm) complexity. We compare our method with two other structure-based alignment methods, LARA and ExpaLoc, and with a sequence-based alignment method, MAFFT, across three benchmarks and obtain favorable results in accuracy and orders of magnitude faster in speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA