RESUMEN
Three kinds of Al-TiO2 samples and pure TiO2 samples were synthesized via a modified polyacrylamide gel route using different aluminum salts, including Al2(SO4)3â18H2O, AlCl3, and Al(NO3)3â9H2O under identical conditions. The influence of different aluminum salts on the phase purity, morphologies, thermal stability of anatase and photocatalytic properties of the as-prepared Al-TiO2 nanoparticles were studied. The energy gap (Eg) of Al-TiO2 nanoparticles decreases due to Al ion doping into TiO2. The photocatalytic activities of the Al-TiO2 samples were investigated by the degradation of acid orange 7 dye in aqueous solution under simulated solar irradiation. The Al-TiO2 nanoparticles prepared from Al(NO3)3â9H2O exhibit the best photocatalytic activity among the four kinds of samples, followed in turn by the Al-TiO2 nanoparticles prepared with AlCl3, Al2(SO4)3â18H2O and pure TiO2. The different performances are attributed to complex effects of Eg, particle size, surface morphology, phase purity and the defect sites of the Al-TiO2 nanoparticles.