RESUMEN
Covering the period 1965-2024Total synthesis has been defined as the art and science of making the molecules of living Nature in the laboratory, and by extension, their analogues. At the extremes, specialised metabolites can be created by total chemical synthesis or by total biosynthesis. In this review we explore the advantages and disadvantages of these two approaches using quantitative methodology that combines measures of molecular complexity, molecular weight and fraction of sp3 centres for bioactive fungal metabolites. Total biosynthesis usually involves fewer chemical steps and those steps move more directly to the target than comparable total chemical synthesis. However, total biosynthesis currently lacks the flexibility of chemical synthesis and the ability to easily diversify synthetic routes.
RESUMEN
Two new 6-norpolycyclic polyprenylated acylphloroglucinols (PPAPs), hypermonins A (1) and B (2), featuring an undescribed decahydroindeno[1,7-bc]furan ring system, were isolated from the leaves and twigs of Hypericum monogynum. These compounds are a pair of epimers with opposite configurations at the C-5 position. Their structures, including their absolute configurations, were determined by extensive spectroscopic analysis and electronic circular dichroism (ECD) calculations. A plausible biosynthetic pathway of 1 and 2 was also proposed. Compound 1 exhibited a significant protective effect against corticosterone-induced injury in PC12 cells.
Asunto(s)
Hemiterpenos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Hypericum/química , Fármacos Neuroprotectores/farmacología , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Animales , Línea Celular Tumoral , Hemiterpenos/química , Hemiterpenos/aislamiento & purificación , Compuestos Heterocíclicos con 3 Anillos/química , Compuestos Heterocíclicos con 3 Anillos/aislamiento & purificación , Modelos Químicos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Floroglucinol/química , Floroglucinol/aislamiento & purificación , Hojas de la Planta/química , Ratas , EstereoisomerismoRESUMEN
The biosynthetic gene cluster of the antifungal metabolite sporothriolide 1 was identified from three producing ascomycetes: Hypomontagnella monticulosa MUCL 54604, H. spongiphila CLL 205 and H. submonticulosa DAOMC 242471. A transformation protocol was established, and genes encoding a fatty acid synthase subunit and a citrate synthase were simultaneously knocked out which led to loss of sporothriolide and sporochartine production. In vitro reactions showed that the sporochartines are derived from non-enzymatic Diels-Alder cycloaddition of 1 and trienylfuranol A 7 during the fermentation and extraction process. Heterologous expression of the spo genes in Aspergillus oryzae then led to the production of intermediates and shunts and delineation of a new fungal biosynthetic pathway originating in fatty acid biosynthesis. Finally, a hydrolase was revealed by in vitro studies likely contributing towards self-resistance of the producer organism.
RESUMEN
Garmultins A and B (1 and 2), two polycyclic polyprenylated acylphloroglucinols characterized by the coupling of two novel cages, 2,11-dioxatricyclo[4.4.1.03,9]undecane and tricyclo[4.3.1.03,7]decane, along with five biogenetically related analogues (3-7), were isolated from Garcinia multiflora. Their structures and absolute configurations were determined by extensive NMR analysis, X-ray crystallography, and electronic circular dichroism calculations. Three compounds were capable of inhibiting oncogene expression and inducing apoptosis in human erythroleukemia cells.