Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(15): 6047-6054, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37017204

RESUMEN

This study used the tert-butylcalix[6]arene (TBC[6]) as the ligand and successfully synthesized six TBC[6]-stabilized titanium-oxo clusters (TOCs) by the one-step solvothermal reaction. These six compounds were [Ti4O2(TBC[6])2] (Ti4), {Ti2(TBC[6])(EtO)2(SaH2)2} (Ti2-SA, H2Sa = squaric acid), {Ti2(TBC[6])2(EtO)2(Oa)} (Ti2-OA, H2Oa = oxalic acid), [H2Ti4(TBC[6])(BA)2(EtO)10] (Ti4-BA, HBA = benzoic acid), [Ti6O2(TBC[6])(BA)4(OiPr)10] (Ti6-BA), and [Ti8(TBC[6])2(Sal)4(EtO)16] (Ti8-Sal, H2Sal = salicylic acid). These clusters contain one or two TBC[6] ligands, with the biconical or monoconical configuration, greatly increasing the variety of TOCs it could support. The introduction of auxiliary carboxylic ligands can further stimulate the growth of structures, with the cluster core gradually increased from {Ti-TBC[6]-Ti} to {Ti2-TBC[6]-Ti2}, to {Ti3-TBC[6]-Ti3}, and finally to {Ti3-TBC[6]-Ti2-TBC[6]-Ti3} with 3.1 nm length. Structural regulation may affect their solution stability, absorption spectra, and photocurrent response. The study of catalytic activities shows that these clusters can be used as recyclable heterogeneous photocatalysts for the oxidation of sulfide to sulfoxide. The catalytic efficiency of the TBC[6]-Tix system is closely related to the cluster structure, and the exposure of the Ti site on the catalyst surface can significantly enhance the catalytic activity of the clusters.

2.
Inorg Chem ; 62(35): 14377-14384, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37620296

RESUMEN

Nanocluster catalysts face a significant challenge in striking the right balance between stability and catalytic activity. Here, we present a thiacalix[4]arene-protected 6-electron [Ag30(TC4A)4(iPrS)8] nanocluster that demonstrates both high stability and catalytic activity. The Ag30 nanocluster features a metallic core, Ag104+, consisting of two Ag3 triangles and one Ag4 square, shielded by four {Ag5@(TC4A)4} staple motifs. Based on DFT calculations, the Ag104+ metallic kernel can be viewed as a trimer comprising 2-electron superatomic units, exhibiting a valence electron structure similar to that of the Be3 molecule. Notably, this is the first crystallographic evidence of the trimerization of 2-electron superatomic units. Ag30 can reduce CO2 into CO with a Faraday efficiency of 93.4% at -0.9 V versus RHE along with excellent long-term stability. Its catalytic activity is far superior to that of the chain-like AgI polymer ∞1{[H2Ag5(TC4A)(iPrS)3]} (∞1Agn), with the composition similar to Ag30. DFT calculations elucidated the catalytic mechanism to clarify the contrasting catalytic performances of the Ag30 and ∞1Agn polymers and disclosed that the intrinsically higher activity of Ag30 may be due to the greater stability of the dual adsorption mode of the *COOH intermediate on the metallic core.

3.
Inorg Chem ; 61(26): 10151-10158, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35748673

RESUMEN

Incorporating heterometal into titanium-oxygen clusters (TOCs) is an effective way to improve its catalytic activity. Herein, we synthesize three novel heterometallic TOCs with the formula of [Ti6Cu2O7(Dmg)2(OAc)4(iPrO)6][H2Ti6Cu2O7(Dmg)2(OAc)4(iPrO)8] ({Ti6Cu2}), [Ti8Cu2O9(Dmg)2(OAc)2(iPrO)12] ({Ti8Cu2}), and [Ti10Co2O6(Dmg)2(Pdc)4(iPrO)18Cl3] ({Ti10Co2}, DmgH2 = dimethylglyoxime; PdcH2 = pyridine-2,3-dicarboxylic acid) using dimethylglyoxime and different carboxylates as the synergistic ligands. By depositing the clusters {Ti6Cu2} and {Ti10Co2} on carbon cloth as electrodes, we investigated the electrocatalytic performance of TOCs for full water splitting for the first time. To reach a 10 mA cm-2 current density in an alkaline solution, the {Ti10Co2}@CC electrode needs an overpotential as low as 120 and 400 mV for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. In addition, full water-splitting equipment with {Ti10Co2}@CC as a cathode and an anode need only 1.67 V to deliver a current density of 10 mA cm-2. Our work confirmed the potential of noble metal-free TOCs as bifunctional cluster-based electrocatalysts for water splitting, and their activities can be tuned by doping with different metal ions.

4.
Inorg Chem ; 60(24): 19263-19269, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34817992

RESUMEN

Incorporating heterometal and chromogenic groups into the titanium oxo cluster (TOC) nanomaterials is one of the effective strategies for the development of new high-performance photoelectrically active materials. In this Article, we report the structures and photoelectrochemical (PEC) performances of a family of TOCs, including pure [Ti12O8(OEt)16L8] ({Me-Ti12}) and six Cd-doped clusters formulated as [H4Cd2Ti10O8(OEt)16(L)8(H2O)2] ({Cd2Ti10}; L = salicylic acid and their derivatives). The six Cd-doped clusters are isostructural, containing the same {Cd2Ti10O8} core, but are protected by salicylic ligands modified with different functional groups. The compositions, structures, and solution stability of these clusters have been studied in detail by single-crystal X-ray diffraction and electrospray ionization mass spectrometry measurements. The embedding of heterometallic Cd(II) and chemical modification of organic protective shells can effectively regulate the PEC water oxidation activity of those clusters, with {F-Cd2Ti10} having the highest turnover number of 518.55 and the highest turnover frequency of 172.85 h-1. Our work highlights the potential of using TOCs that do not contain noble metals as water oxidation catalysts, and their catalytic activity can be regulated by structural modification.

5.
Chem Sci ; 15(20): 7643-7650, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784741

RESUMEN

Attaining meticulous dominion over the binding milieu of catalytic metal sites remains an indispensable pursuit to tailor product selectivity and elevate catalytic activity. By harnessing the distinctive attributes of a Zr4+-anchored thiacalix[4]arene (TC4A) metalloligand, we have pioneered a methodology for incorporating catalytic Ag1+ sites, resulting in the first Zr-Ag bimetallic cluster, Zr2Ag7, which unveils a dualistic configuration embodying twin {ZrAg3(TC4A)2} substructures linked by an {AgSal} moiety. This cluster unveils a trinity of discrete Ag sites: a pair ensconced within {ZrAg3(TC4A)2} subunits and one located between two units. Expanding the purview, we have also crafted ZrAg3 and Zr2Ag2 clusters, meticulously mimicking the two Ag site environment inherent in the {ZrAg3(TC4A)2} monomer. The distinct structural profiles of Zr2Ag7, ZrAg3, and Zr2Ag provide an exquisite foundation for a precise comparative appraisal of catalytic prowess across three Ag sites intrinsic to Zr2Ag7. Remarkably, Zr2Ag7 eclipses its counterparts in the electroreduction of CO2, culminating in a CO faradaic efficiency (FECO) of 90.23% at -0.9 V. This achievement markedly surpasses the performance metrics of ZrAg3 (FECO: 55.45% at -1.0 V) and Zr2Ag2 (FECO: 13.09% at -1.0 V). Utilizing in situ ATR-FTIR, we can observe reaction intermediates on the Ag sites. To unveil underlying mechanisms, we employ density functional theory (DFT) calculations to determine changes in free energy accompanying each elementary step throughout the conversion of CO2 to CO. Our findings reveal the exceptional proficiency of the bridged-Ag site that interconnects paired {ZrAg3(TC4A)2} units, skillfully stabilizing *COOH intermediates, surpassing the stabilization efficacy of the other Ag sites located elsewhere. The invaluable insights gleaned from this pioneering endeavor lay a novel course for the design of exceptionally efficient catalysts tailored for CO2 reduction reactions, emphatically underscoring novel vistas this research unshrouds.

6.
Chem Sci ; 14(37): 10212-10218, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37772117

RESUMEN

The accurate identification of catalytic sites in heterogeneous catalysts poses a significant challenge due to the intricate nature of controlling interfacial chemistry at the molecular level. In this study, we introduce a novel strategy to address this issue by utilizing a thiacalix[4]arene (TC4A)-protected Ti-oxo core as a template for loading Ag1+ ions, leading to the successful synthesis of a unique Ag/Ti bimetallic nanocluster denoted as Ti8Ag8. This nanocluster exhibits multiple surface-exposed Ag sites and possesses a distinctive "core-shell" structure, consisting of a {Ti4@Ag8(TC4A)4} core housing a {Ti2O2@Ag4(TC4A)2} motif and two {Ti@Ag2(TC4A)} motifs. To enable a comprehensive analysis, we also prepared a Ti2Ag4 cluster with the same {Ti2O2@Ag4(TC4A)2} structure found within Ti8Ag8. The structural disparities between Ti8Ag8 and Ti2Ag4 provide an excellent platform for a comparison of catalytic activity at different Ag sites. Remarkably, Ti8Ag8 exhibits exceptional performance in the electroreduction of CO2 (eCO2RR), showcasing a CO faradaic efficiency (FECO) of 92.33% at -0.9 V vs. RHE, surpassing the FECO of Ti2Ag4 (69.87% at -0.9 V vs. RHE) by a significant margin. Through density functional theory (DFT) calculations, we unveil the catalytic mechanism and further discover that Ag active sites located at {Ti@Ag2(TC4A)} possess a higher εd value compared to those at {Ti2O2@Ag4(TC4A)2}, enhancing the stabilization of the *COOH intermediate during the eCO2RR. This study provides valuable insights into the accurate identification of catalytic sites in bimetallic nanoclusters and opens up promising avenues for efficient CO2 reduction catalyst design.

7.
Chem Commun (Camb) ; 59(74): 11097-11100, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37642513

RESUMEN

We report an unprecedented heterometallic aluminum oxo cluster (AlOC) containing four surface-exposed CoII sites, designated as Al12Co4, protected by four t-butylcalix[4]arene (TBC[4]) molecules. The Al12Co4 nanocluster represents a significant advancement on multiple innovative fronts. First, it stands as an pioneering example of an AlIII-based metallocalixarene nanocluster. It is also the first instance of heterometallic AlOCs shielded by macrocyclic ligands. Notably, this cluster also holds the distinction of being the highest nuclearity Al-Co bimetallic nanocluster known to date. Additionally, by depositing Al12Co4 on carbon nanotubes (CNTs) as a supported catalyst, we investigated its electrocatalytic performance for the oxygen evolution reaction in alkaline media. To reach a 10 mA cm-2 current density in alkaline solution, the Al12Co4@CNT electrode needs overpotential as low as 320 mV.

8.
Chem Commun (Camb) ; 59(5): 575-578, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36515143

RESUMEN

A large polymolybdate-templated {Ag49Mo16} cluster protected by six thiacalix[4]arene (TC4A) molecules was synthesized by a one-pot solvothermal reaction. Structural analysis shows that the {Ag49Mo16} is assembled by inserting a [Mo6O22]8- cluster into a [Ag49Mo10@(TC4A)6] cage, representing the first polyoxometalate-templated Ag cluster protected by calixarene macrocyclic ligands. The solution stability and photoelectric properties of {Ag49Mo16} are discussed. Furthermore, this POM-templated Ag nanocluster realized electrocatalytic CO2 reduction applications, and 44.75% CO faradaic efficiency (FE) was obtained at a voltage of -0.8 V (vs. RHE).

9.
Chem Sci ; 14(48): 14280-14289, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38098712

RESUMEN

Skillfully engineering surface ligands at specific sites within robust clusters presents both a formidable challenge and a captivating opportunity. Herein we unveil an unprecedented titanium-oxo cluster: a calix[8]arene-stabilized metallamacrocycle (Ti16L4), uniquely crafted through the fusion of four "core-shell" {Ti4@(TBC[8])(L)} subunits with four oxalate moieties. Notably, this cluster showcases an exceptional level of chemical stability, retaining its crystalline integrity even when immersed in highly concentrated acid (1 M HNO3) and alkali (20 M NaOH). The macrocycle's surface unveils four specific, customizable µ2-bridging sites, primed to accommodate diverse carboxylate ligands. This adaptability is highlighted through deliberate modifications achieved by alternating crystal soaking in alkali and carboxylic acid solutions. Furthermore, Ti16L4 macrocycles autonomously self-assemble into one-dimensional nanotubes, which subsequently organize into three distinct solid phases, contingent upon the specific nature of the four µ2-bridging ligands. Notably, the Ti16L4 exhibit a remarkable capacity for photocatalytic activity in selectively reducing CO2 to CO. Exploiting the macrocycle's modifiable shell yields a significant boost in performance, achieving an exceptional maximum CO release rate of 4.047 ± 0.243 mmol g-1 h-1. This study serves as a striking testament to the latent potential of precision-guided surface ligand manipulation within robust clusters, while also underpinning a platform for producing microporous materials endowed with a myriad of surface functionalities.

10.
Huan Jing Ke Xue ; 44(10): 5657-5665, 2023 Oct 08.
Artículo en Zh | MEDLINE | ID: mdl-37827782

RESUMEN

To understand the status of heavy metals in soils of typical industrial and mining towns and quantitatively analyze the potential sources, the contents of seven heavy metals (Cd, As, Pb, Cr, Cu, Ni, and Zn) in 150 surface soils in Xuanhua District, Zhangjiakou City, Hebei Province were collected and examined. The geoaccumulation index and potential ecological risk index methods were used to evaluate the heavy metal pollution status and potential ecological risk. Principal component analysis (PCA) and the positive matrix factorization (PMF) model were used to comprehensively analyze the pollution sources of seven heavy metals, and geostatistics was used to identify the high contribution areas of potential sources. The results revealed that:① the average values of heavy metals in the study area ranged from 0.23-103.34 mg·kg-1, among which the average contents of Cd, Pb, Cu, and Zn were higher than the soil background value of Hebei Province. ② The results of the geoaccumulation and potential ecological risk indices demonstrated that the degree of pollution of the seven heavy metals was in the following order:Cd>Pb>Cu>Zn>Ni>As>Cr, the content of Cd in 16% sites was above a moderate pollution level, and the potential ecological risk of heavy metals in more than 95% sites was at a light risk level. ③ The main sources of accumulation of the seven heavy metals in the study area were combined sources of industry and traffic, natural sources, and agricultural sources, with their contribution rates of 33.1%, 48.7%, and 18.2%, respectively. Among them, Cd, Pb, Cu, and Zn were primarily affected by the combined sources of industry and transportation; Cr, Ni, and As were mainly affected by natural sources, whereas Cd and some As were affected by agricultural sources. The organic combination of PCA, PMF model, and geostatistical methods confirmed the results of each analysis, which increased the reliability of the analytical results of heavy metal sources.

11.
Chem Commun (Camb) ; 58(64): 9034-9037, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876039

RESUMEN

High-valence Ti(IV)-based metallocalixarene coordination cages that are linked by oriented ancillary ligands are unknown so far. Herein, the first family of tunable calixarene-based coordination cages of Ti(IV) with a framework formula [Ti12(OiPr)12(TBC[4])6L6] have been assembled from six {Ti2(OiPr)2(TBC[4])}2+ nodes and six pyridinedicarboxylic ligands. Furthermore, the {Ti12L6} cage showed strong photocatalytic H2 evolution activity, and DFT studies were performed to explore its electronic structure.

12.
Chem Commun (Camb) ; 58(40): 6028-6031, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35502757

RESUMEN

Polyhedral metallocalixarene nanocage clusters based on pure Ti(IV) ions are to our knowledge unknown hitherto. Herein we report the first Ti(IV)-based metallocalixarene nanocage cluster by assembling a [Ti13O14] cage with six t-butylcalix[4]arene molecules. Notably, the cluster exhibits extraordinary stability in high-concentration acid/alkali solutions and can act as a stable photocatalyst to catalyze the oxidation of ammonia to imines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA