Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 203: 364-377, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34144175

RESUMEN

The discovery and application of human-induced pluripotent stem cells (hiPSCs) have been instrumental in the investigation of the pathophysiology of cardiovascular diseases. Patient-specific hiPSCs can now be generated, genome-edited, and subsequently differentiated into various cell types and used for regenerative medicine, disease modeling, drug testing, toxicity screening, and 3D tissue generation. Modulation of the retinoic acid signaling pathway has been shown to direct cardiomyocyte differentiation towards an atrial lineage. A variety of studies have successfully differentiated patient-specific atrial cardiac myocytes (hiPSC-aCM) and atrial engineered heart tissue (aEHT) that express atrial specific genes (e.g., sarcolipin and ANP) and exhibit atrial electrophysiological and contractility profiles. Identification of protocols to differentiate atrial cells from patients with atrial fibrillation and other inherited diseases or creating disease models using genetic mutation studies has shed light on the mechanisms of atrial-specific diseases and identified the efficacy of atrial-selective pharmacological compounds. hiPSC-aCMs and aEHTs can be used in drug discovery and drug screening studies to investigate the efficacy of atrial selective drugs on atrial fibrillation models. Furthermore, hiPSC-aCMs can be effective tools in studying the mechanism, pathophysiology and treatment options of atrial fibrillation and its genetic underpinnings. The main limitation of using hiPSC-CMs is their immature phenotype compared to adult CMs. A wide range of approaches and protocols are used by various laboratories to optimize and enhance CM maturation, including electrical stimulation, culture time, biophysical cues and changes in metabolic factors.


Asunto(s)
Fibrilación Atrial , Células Madre Pluripotentes Inducidas , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Diferenciación Celular , Descubrimiento de Drogas , Humanos , Miocitos Cardíacos/metabolismo
2.
Methods ; 203: 542-557, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34197925

RESUMEN

Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción/fisiología , Arritmias Cardíacas/genética , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología
3.
J Biol Chem ; 296: 100350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33548225

RESUMEN

Cardiac muscle thin filaments are composed of actin, tropomyosin, and troponin that change conformation in response to Ca2+ binding, triggering muscle contraction. Human cardiac troponin C (cTnC) is the Ca2+-sensing component of the thin filament. It contains structural sites (III/IV) that bind both Ca2+ and Mg2+ and a regulatory site (II) that has been thought to bind only Ca2+. Binding of Ca2+ at this site initiates a series of conformational changes that culminate in force production. However, the mechanisms that underpin the regulation of binding at site II remain unclear. Here, we have quantified the interaction between site II and Ca2+/Mg2+ through isothermal titration calorimetry and thermodynamic integration simulations. Direct and competitive binding titrations with WT N-terminal cTnC and full-length cTnC indicate that physiologically relevant concentrations of both Ca2+/Mg2+ interacted with the same locus. Moreover, the D67A/D73A N-terminal cTnC construct in which two coordinating residues within site II were removed was found to have significantly reduced affinity for both cations. In addition, 1 mM Mg2+ caused a 1.4-fold lower affinity for Ca2+. These experiments strongly suggest that cytosolic-free Mg2+ occupies a significant population of the available site II. Interaction of Mg2+ with site II of cTnC likely has important functional consequences for the heart both at baseline as well as in diseased states that decrease or increase the availability of Mg2+, such as secondary hyperparathyroidism or ischemia, respectively.


Asunto(s)
Calcio/metabolismo , Magnesio/metabolismo , Troponina C/metabolismo , Sitios de Unión , Cationes Bivalentes/metabolismo , Humanos , Miocardio/metabolismo , Unión Proteica , Termodinámica , Troponina C/química
4.
Proc Natl Acad Sci U S A ; 116(14): 6969-6974, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30886088

RESUMEN

Sudden unexpected death of an infant (SUDI) is a devastating occurrence for families. To investigate the genetic pathogenesis of SUDI, we sequenced >70 genes from 191 autopsy-negative SUDI victims. Ten infants sharing a previously unknown variant in troponin I (TnI) were identified. The mutation (TNNI1 R37C+/-) is in the fetal/neonatal paralog of TnI, a gene thought to be expressed in the heart up to the first 24 months of life. Using phylogenetic analysis and molecular dynamics simulations, it was determined that arginine at residue 37 in TNNI1 may play a critical functional role, suggesting that the variant may be pathogenic. We investigated the biophysical properties of the TNNI1 R37C mutation in human reconstituted thin filaments (RTFs) using fluorometry. RTFs reconstituted with the mutant R37C TnI exhibited reduced Ca2+-binding sensitivity due to an increased Ca2+ off-rate constant. Furthermore, we generated TNNI1 R37C+/- mutants in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) using CRISPR-Cas9. In monolayers of hiPSC-CMs, we simultaneously monitored voltage and Ca2+ transients through optical mapping and compared them to their isogenic controls. We observed normal intrinsic beating patterns under control conditions in TNNI1 R37C+/- at stimulation frequencies of 55 beats/min (bpm), but these cells showed no restitution with increased stimulation frequency to 65 bpm and exhibited alternans at >75 bpm. The WT hiPSC-CMs did not exhibit any sign of arrhythmogenicity even at stimulation frequencies of 120 bpm. The approach used in this study provides critical physiological and mechanistic bases to investigate sarcomeric mutations in the pathogenesis of SUDI.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Simulación de Dinámica Molecular , Mutación Missense , Miocitos Cardíacos/metabolismo , Muerte Súbita del Lactante/genética , Troponina I , Calcio/química , Calcio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/patología , Recién Nacido , Contracción Miocárdica/genética , Miocitos Cardíacos/patología , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/patología , Muerte Súbita del Lactante/patología , Troponina I/química , Troponina I/genética , Troponina I/metabolismo
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502196

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.


Asunto(s)
Emociones/fisiología , Ejercicio Físico , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Niño , Humanos , Taquicardia Ventricular/patología
6.
Am J Physiol Heart Circ Physiol ; 319(2): H251-H261, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32559136

RESUMEN

Human ether-à-go-go related gene (hERG) K+ channels are important in cardiac repolarization, and their dysfunction causes prolongation of the ventricular action potential, long QT syndrome, and arrhythmia. As such, approaches to augment hERG channel function, such as activator compounds, have been of significant interest due to their marked therapeutic potential. Activator compounds that hinder channel inactivation abbreviate action potential duration (APD) but carry risk of overcorrection leading to short QT syndrome. Enhanced risk by overcorrection of the APD may be tempered by activator-induced increased refractoriness; however, investigation of the cumulative effect of hERG activator compounds on the balance of these effects in whole organ systems is lacking. Here, we have investigated the antiarrhythmic capability of a hERG activator, RPR260243, which primarily augments channel function by slowing deactivation kinetics in ex vivo zebrafish whole hearts. We show that RPR260243 abbreviates the ventricular APD, reduces triangulation, and steepens the slope of the electrical restitution curve. In addition, RPR260243 increases the post-repolarization refractory period. We provide evidence that this latter effect arises from RPR260243-induced enhancement of hERG channel-protective currents flowing early in the refractory period. Finally, the cumulative effect of RPR260243 on arrhythmogenicity in whole organ zebrafish hearts is demonstrated by the restoration of normal rhythm in hearts presenting dofetilide-induced arrhythmia. These findings in a whole organ model demonstrate the antiarrhythmic benefit of hERG activator compounds that modify both APD and refractoriness. Furthermore, our results demonstrate that targeted slowing of hERG channel deactivation and enhancement of protective currents may provide an effective antiarrhythmic approach.NEW & NOTEWORTHY hERG channel dysfunction causes long QT syndrome and arrhythmia. Activator compounds have been of significant interest due to their therapeutic potential. We used the whole organ zebrafish heart model to demonstrate the antiarrhythmic benefit of the hERG activator, RPR260243. The activator abbreviated APD and increased refractoriness, the combined effect of which rescued induced ventricular arrhythmia. Our findings show that the targeted slowing of hERG channel deactivation and enhancement of protective currents caused by the RPR260243 activator may provide an effective antiarrhythmic approach.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Canal de Potasio ERG1/agonistas , Canales de Potasio Éter-A-Go-Go/agonistas , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Piperidinas/farmacología , Quinolinas/farmacología , Proteínas de Pez Cebra/agonistas , Potenciales de Acción , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Cinética , Miocitos Cardíacos/metabolismo , Oocitos , Periodo Refractario Electrofisiológico , Transducción de Señal , Xenopus laevis , Pez Cebra , Proteínas de Pez Cebra/metabolismo
7.
Hum Mol Genet ; 26(23): 4617-4628, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973536

RESUMEN

SCO1 is a ubiquitously expressed, mitochondrial protein with essential roles in cytochrome c oxidase (COX) assembly and the regulation of copper homeostasis. SCO1 patients present with severe forms of early onset disease, and ultimately succumb from liver, heart or brain failure. However, the inherent susceptibility of these tissues to SCO1 mutations and the clinical heterogeneity observed across SCO1 pedigrees remain poorly understood phenomena. To further address this issue, we generated Sco1hrt/hrt and Sco1stm/stm mice in which Sco1 was specifically deleted in heart and striated muscle, respectively. Lethality was observed in both models due to a combined COX and copper deficiency that resulted in a dilated cardiomyopathy. Left ventricular dilation and loss of heart function was preceded by a temporal decrease in COX activity and copper levels in the longer-lived Sco1stm/stm mice. Interestingly, the reduction in copper content of Sco1stm/stm cardiomyocytes was due to the mislocalisation of CTR1, the high affinity transporter that imports copper into the cell. CTR1 was similarly mislocalized to the cytosol in the heart of knockin mice carrying a homozygous G115S substitution in Sco1, which in humans causes a hypertrophic cardiomyopathy. Our current findings in the heart are in marked contrast to our prior observations in the liver, where Sco1 deletion results in a near complete absence of CTR1 protein. These data collectively argue that mutations perturbing SCO1 function have tissue-specific consequences for the machinery that ultimately governs copper homeostasis, and further establish the importance of aberrant mitochondrial signaling to the etiology of copper handling disorders.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Membrana Celular/metabolismo , Cobre/deficiencia , Transportador de Cobre 1 , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/genética , Homeostasis , Transporte Iónico , Metalochaperonas/genética , Metalochaperonas/metabolismo , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Transducción de Señal
8.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R921-R931, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31664867

RESUMEN

There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Corazón/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Proteínas de Pez Cebra/metabolismo , Animales , Clorobencenos/farmacología , Cresoles/farmacología , Canales de Potasio Éter-A-Go-Go/genética , Regulación de la Expresión Génica/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Fenetilaminas/farmacología , Compuestos de Fenilurea/farmacología , Piperidinas/farmacología , Quinolinas/farmacología , Sulfonamidas/farmacología , Terfenadina/farmacología , Xenopus laevis , Pez Cebra , Proteínas de Pez Cebra/genética , ortoaminobenzoatos/farmacología
9.
J Biol Chem ; 292(28): 11915-11926, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28533433

RESUMEN

Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca2+ TnC binding Ca2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnISW). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca2+ and TnISW Surprisingly the Ca2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca2+-binding site of cTnC.


Asunto(s)
Señalización del Calcio , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica/genética , Modelos Moleculares , Mutación , Troponina C/metabolismo , Troponina I/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Calorimetría , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica Familiar/metabolismo , Transferencia de Energía , Humanos , Cinética , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Recombinantes/metabolismo , Volumetría , Troponina C/antagonistas & inhibidores , Troponina C/química , Troponina C/genética , Troponina I/química
10.
Rev Physiol Biochem Pharmacol ; 171: 99-136, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27538987

RESUMEN

Zebrafish (Danio rerio) are widely used as vertebrate model in developmental genetics and functional genomics as well as in cardiac structure-function studies. The zebrafish heart has been increasingly used as a model of human cardiac function, in part, due to the similarities in heart rate and action potential duration and morphology with respect to humans. The teleostian zebrafish is in many ways a compelling model of human cardiac function due to the clarity afforded by its ease of genetic manipulation, the wealth of developmental biological information, and inherent suitability to a variety of experimental techniques. However, in addition to the numerous advantages of the zebrafish system are also caveats related to gene duplication (resulting in paralogs not present in human or other mammals) and fundamental differences in how zebrafish hearts function. In this review, we discuss the use of zebrafish as a cardiac function model through the use of techniques such as echocardiography, optical mapping, electrocardiography, molecular investigations of excitation-contraction coupling, and their physiological implications relative to that of the human heart. While some of these techniques (e.g., echocardiography) are particularly challenging in the zebrafish because of diminutive size of the heart (~1.5 mm in diameter) critical information can be derived from these approaches and are discussed in detail in this article.


Asunto(s)
Corazón/fisiología , Modelos Animales , Pez Cebra/fisiología , Potenciales de Acción/fisiología , Animales , Ecoencefalografía , Electrocardiografía , Acoplamiento Excitación-Contracción/fisiología , Corazón/anatomía & histología , Corazón/inervación , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Miocitos Cardíacos/fisiología , Imagen de Colorante Sensible al Voltaje , Pez Cebra/genética
11.
Am J Physiol Heart Circ Physiol ; 314(2): H285-H292, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101173

RESUMEN

The ability of cardiomyocytes to recover from a proton load was examined in the hearts of exercise-trained and sedentary control rats in CO2/[Formula: see text]-free media. Acidosis was created by the NH4Cl prepulse technique, and intracellular pH (pHi) was determined using fluorescence microscopy on carboxy-SNARF-1 AM-loaded isolated cardiomyocytes. CO2-independent pHi buffering capacity (ßi) was measured by incrementally reducing the extracellular NH4Cl concentration in steps of 50% from 20 to 1.25 mM. ßi increased as pHi decreased in both exercise-trained and sedentary control groups. However, the magnitude of increase in ßi as a function of pHi was found to be significantly ( P < 0.001) greater in the exercise-trained group compared with the sedentary control group. The rate of pHi recovery from an imposed proton load was found to not be different between the exercise-trained and control groups. The Na+/H+ exchanger-dependent H+ extrusion rate during the recovery from an imposed proton load, however, was found to be significantly greater in the exercise-trained group compared with the control group. By increasing ßi and subsequently the Na+/H+ exchanger-dependent H+ extrusion rate, exercise training may provide cardiomyocytes with the ability to better handle an intracellular excess of H+ generated during hypoxia/ischemic insults and may serve in a cardioprotective role. These data may be predictive of two positive outcomes: 1) increased exercise tolerance by the heart and 2) a protective mechanism that limits the degree of myocardial acidosis and subsequent damage that accompanies ischemia-reperfusion stress. NEW & NOTEWORTHY The enhanced ability to deal with acidosis conferred by exercise training is likely to improve exercise tolerance and outcomes in response to myocardial ischemia-reperfusion injury.


Asunto(s)
Equilibrio Ácido-Base , Acidosis/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Resistencia Física , Intercambiadores de Sodio-Hidrógeno/metabolismo , Acidosis/fisiopatología , Adaptación Fisiológica , Animales , Células Cultivadas , Femenino , Concentración de Iones de Hidrógeno , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Ratas Sprague-Dawley , Recuperación de la Función , Carrera , Factores de Tiempo
12.
Biophys J ; 111(1): 38-49, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27410732

RESUMEN

Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity that we have measured by ITC.


Asunto(s)
Simulación de Dinámica Molecular , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Homología de Secuencia de Aminoácido , Troponina C/química , Troponina C/metabolismo , Pez Cebra , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Calorimetría , Temperatura , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
13.
Am J Physiol Regul Integr Comp Physiol ; 308(9): R755-68, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25740339

RESUMEN

Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented.


Asunto(s)
Calcio/metabolismo , Técnicas Electrofisiológicas Cardíacas , Corazón/inervación , Imagen de Colorante Sensible al Voltaje , Pez Cebra/fisiología , Potenciales de Acción/fisiología , Animales , Función Atrial/fisiología , Estimulación Eléctrica , Electrocardiografía , Fenómenos Electrofisiológicos , Corazón/fisiología , Función Ventricular/fisiología
14.
Am J Physiol Regul Integr Comp Physiol ; 306(11): R823-36, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24671241

RESUMEN

The zebrafish (Danio rerio) has emerged as an important model for developmental cardiovascular (CV) biology; however, little is known about the cardiac function of the adult zebrafish enabling it to be used as a model of teleost CV biology. Here, we describe electrophysiological parameters, such as heart rate (HR), action potential duration (APD), and atrioventricular (AV) delay, in the zebrafish heart over a range of physiological temperatures (18-28°C). Hearts were isolated and incubated in a potentiometric dye, RH-237, enabling electrical activity assessment in several distinct regions of the heart simultaneously. Integration of a rapid thermoelectric cooling system facilitated the investigation of acute changes in temperature on critical electrophysiological parameters in the zebrafish heart. While intrinsic HR varied considerably between fish, the ex vivo preparation exhibited impressively stable HRs and sinus rhythm for more than 5 h, with a mean HR of 158 ± 9 bpm (means ± SE; n = 20) at 28°C. Atrial and ventricular APDs at 50% repolarization (APD50) were 33 ± 1 ms and 98 ± 2 ms, respectively. Excitation originated in the atrium, and there was an AV delay of 61 ± 3 ms prior to activation of the ventricle at 28°C. APD and AV delay varied between hearts beating at unique HRs; however, APD and AV delay did not appear to be statistically dependent on intrinsic basal HR, likely due to the innate beat-to-beat variability within each heart. As hearts were cooled to 18°C (by 1°C increments), HR decreased by ~40%, and atrial and ventricular APD50 increased by a factor of ~3 and 2, respectively. The increase in APD with cooling was disproportionate at different levels of repolarization, indicating unique temperature sensitivities for ion currents at different phases of the action potential. The effect of temperature was more apparent at lower levels of repolarization and, as a whole, the atrial APD was the cardiac parameter most affected by acute temperature change. In conclusion, this study describes a preparation enabling the in-depth analysis of transmembrane potential dynamics in whole zebrafish hearts. Because the zebrafish offers some critical advantages over the murine model for cardiac electrophysiology, optical mapping studies utilizing zebrafish offer insightful information into the understanding and treatment of human cardiac arrhythmias, as well as serving as a model for other teleosts.


Asunto(s)
Potenciales de Acción/fisiología , Nodo Atrioventricular/fisiología , Frecuencia Cardíaca/fisiología , Corazón/inervación , Corazón/fisiología , Temperatura , Pez Cebra/fisiología , Animales , Función Atrial/fisiología , Técnicas Electrofisiológicas Cardíacas , Concentración de Iones de Hidrógeno , Modelos Animales , Función Ventricular/fisiología , Imagen de Colorante Sensible al Voltaje
15.
Front Cell Dev Biol ; 12: 1298007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304423

RESUMEN

Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.

16.
Physiol Genomics ; 45(18): 866-75, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23881286

RESUMEN

The teleost-specific whole genome duplication created multiple copies of genes allowing for subfunctionalization of isoforms. In this study, we show that the teleost cardiac Ca2+-binding troponin C (TnC) is the product of two distinct genes: cardiac TnC (cTnC, TnnC1a) and a fish-specific slow skeletal TnC (ssTnC, TnnC1b). The ssTnC gene is novel to teleosts as mammals have a single gene commonly referred as cTnC but which is also expressed in slow skeletal muscle. In teleosts, the data strongly indicate that these are two TnC genes are different paralogs. Because we determined that ssTnC exists across many teleosts but not in basal ray-finned fish (e.g., bichir), we propose that these paralogs are the result of an ancestral tandem gene duplication persisting only in teleosts. Quantification of mRNA levels was used to demonstrate distinct expression localization patterns of the paralogs within the chambers of the heart. In the adult zebrafish acclimated at 28°C, ssTnC mRNA levels are twofold greater than cTnC mRNA levels in the atrium, whereas cTnC mRNA was almost exclusively expressed in the ventricle. Meanwhile, rainbow trout acclimated at 5°C showed cTnC mRNA levels in both chambers significantly greater than ssTnC. Distinct responses to temperature acclimation were also quantified in both adult zebrafish and rainbow trout, with mRNA in both chambers shifting to express higher levels of cTnC in 18°C acclimated zebrafish and 5°C acclimated trout. Possible subfunctionalization of TnC isoforms may provide insight into how teleosts achieve physiological versatility in chamber-specific contractile properties.


Asunto(s)
Peces/metabolismo , Regulación de la Expresión Génica , Miocardio/metabolismo , Troponina C/metabolismo , Aclimatación , Secuencia de Aminoácidos , Animales , Frío , Genoma , Ventrículos Cardíacos/metabolismo , Humanos , Datos de Secuencia Molecular , Músculos , Contracción Miocárdica/fisiología , Fenotipo , Filogenia , Isoformas de Proteínas , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Temperatura , Troponina C/química , Pez Cebra
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 722-34, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633581

RESUMEN

The amino-terminal domain of cardiac troponin C (cNTnC) is an essential Ca(2+) sensor found in cardiomyocytes. It undergoes a conformational change upon Ca(2+) binding and transduces the signal to the rest of the troponin complex to initiate cardiac muscle contraction. Two classical EF-hand motifs (EF1 and EF2) are present in cNTnC. Under physiological conditions, only EF2 binds Ca(2+); EF1 is a vestigial site that has lost its function in binding Ca(2+) owing to amino-acid sequence changes during evolution. Proteins with EF-hand motifs are capable of binding divalent cations other than calcium. Here, the crystal structure of wild-type (WT) human cNTnC in complex with Cd(2+) is presented. The structure of Cd(2+)-bound cNTnC with the disease-related mutation L29Q, as well as a structure with the residue differences D2N, V28I, L29Q and G30D (NIQD), which have been shown to have functional importance in Ca(2+) sensing at lower temperatures in ectothermic species, have also been determined. The structures resemble the overall conformation of NMR structures of Ca(2+)-bound cNTnC, but differ significantly from a previous crystal structure of Cd(2+)-bound cNTnC in complex with deoxycholic acid. The subtle structural changes observed in the region near the mutations may play a role in the increased Ca(2+) affinity. The 1.4 Å resolution WT cNTnC structure, which is the highest resolution structure yet obtained for cardiac troponin C, reveals a Cd(2+) ion coordinated in the canonical pentagonal bipyramidal geometry in EF2 despite three residues in the loop being disordered. A Cd(2+) ion found in the vestigial ion-binding site of EF1 is coordinated in a noncanonical `distorted' octahedral geometry. A comparison of the ion coordination observed within EF-hand-containing proteins for which structures have been solved in the presence of Cd(2+) is presented. A refolded WT cNTnC structure is also presented.


Asunto(s)
Cadmio/metabolismo , Troponina C/química , Troponina C/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Cadmio/toxicidad , Calcio/metabolismo , Cristalografía por Rayos X , Cisteína/química , Cardiopatías/inducido químicamente , Cardiopatías/genética , Modelos Moleculares , Mutación , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Troponina C/genética
18.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220176, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122209

RESUMEN

In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Humanos , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Hipertrófica/genética , Troponina T/genética , Troponina T/metabolismo , Hipertrofia , Mutación
19.
Can J Cardiol ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37952715

RESUMEN

The advent of human induced pluripotent stem cells (hiPSCs) and their capacity to be differentiated into beating human cardiomyocytes (CMs) in vitro has revolutionized human disease modelling, genotype-phenotype predictions, and therapeutic testing. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiomyopathy and the leading known cause of sudden cardiac arrest in young adults and athletes. On a molecular level, HCM is often driven by single pathogenic genetic variants, usually in sarcomeric proteins, that can alter the mechanical, electrical, signalling, and transcriptional properties of the cell. A deeper knowledge of these alterations is critical to better understanding HCM manifestation, progression, and treatment. Leveraging hiPSC-CMs to investigate the molecular mechanisms driving HCM presents a unique opportunity to dissect the consequences of genetic variants in a sophisticated and controlled manner. In this review, we summarize the molecular underpinnings of HCM and the role of hiPSC-CM studies in advancing our understanding, and we highlight the advances in hiPSC-CM-based modelling of HCM, including maturation, contractility, multiomics, and genome editing, with the notable exception of electrophysiology, which has been previously covered.

20.
bioRxiv ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37609317

RESUMEN

Hypertrophic cardiomyopathy (HCM) is one of the most common heritable cardiovascular diseases and variants of TNNT2 (cardiac troponin T) are linked to increased risk of sudden cardiac arrest despite causing limited hypertrophy. In this study, a TNNT2 variant, R278C+/-, was generated in both human cardiac recombinant/reconstituted thin filaments (hcRTF) and human- induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which the R278C+/- variant affects cardiomyocytes at the proteomic and functional levels. The results of proteomics analysis showed a significant upregulation of markers of cardiac hypertrophy and remodeling in R278C+/- vs. the isogenic control. Functional measurements showed that R278C+/- variant enhances the myofilament sensitivity to Ca2+, increases the kinetics of contraction, and causes arrhythmia at frequencies >75 bpm. This study uniquely shows the profound impact of the TNNT2 R278C+/- variant on the cardiomyocyte proteomic profile, cardiac electrical and contractile function in the early stages of cardiac development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA