Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Br J Anaesth ; 131(4): 745-763, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567808

RESUMEN

BACKGROUND: Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS: In silico molecular dynamics simulation, in vitro electrophysiology, and in vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS: Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. In vitro and in vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS: These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.


Asunto(s)
Agonismo Inverso de Drogas , Neuralgia , Ratas , Animales , Calidad de Vida , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/uso terapéutico , Neuralgia/tratamiento farmacológico , Fenómenos Electrofisiológicos
2.
J Pharmacol Exp Ther ; 345(3): 363-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23549867

RESUMEN

Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)-mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2-HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABA(A) receptor (GABA(A)-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABA(A)-R function and are general anesthetics. 2,6-DTBP retained propofol's selectivity for HCN1 over HCN2-HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABA(A)-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the damaged peripheral nervous system.


Asunto(s)
Anestésicos Intravenosos/farmacología , Anestésicos/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Canales de Potasio/efectos de los fármacos , Propofol/análogos & derivados , Propofol/farmacología , Algoritmos , Anestésicos/uso terapéutico , Anestésicos Intravenosos/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Disponibilidad Biológica , ADN Complementario/biosíntesis , ADN Complementario/genética , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Calor , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Indicadores y Reactivos , Membrana Dobles de Lípidos , Ratones , Ratones Endogámicos C57BL , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Propofol/uso terapéutico , Xenopus
3.
Neurobiol Pain ; 14: 100141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099280

RESUMEN

2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.

4.
J Neurosci ; 31(28): 10412-23, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21753018

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate a pacemaking current, I(h), which regulates neuronal excitability and oscillatory activity in the brain. Although all four HCN isoforms are expressed in the brain, the functional contribution of HCN3 is unknown. Using immunohistochemistry, confocal microscopy, and whole-cell patch-clamp recording techniques, we investigated HCN3 function in thalamic intergeniculate leaflet (IGL) neurons, as HCN3 is reportedly preferentially expressed in these cells. We observed that I(h) recorded from IGL, but not ventral geniculate nucleus, neurons in HCN2(+/+) mice and rats activated slowly and were cAMP insensitive, which are hallmarks of HCN3 channels. We also observed strong immunolabeling for HCN3, with no labeling for HCN1 and HCN4, and only very weak labeling for HCN2. Deletion of HCN2 did not alter I(h) characteristics in mouse IGL neurons. These data together indicate that the HCN3 channel isoform generated I(h) in IGL neurons. Intracellular phosphatidylinositol-4,5-bisphosphate (PIP(2)) shifted I(h) activation to more depolarized potentials and accelerated activation kinetics. Upregulation of HCN3 function by PIP(2) augmented low-threshold burst firing and spontaneous oscillations; conversely, depletion of PIP(2) or pharmacologic block of I(h) resulted in a profound inhibition of excitability. The results indicate that functional expression of HCN3 channels in IGL neurons is crucial for intrinsic excitability and rhythmic burst firing, and PIP(2) serves as a powerful modulator of I(h)-dependent properties via an effect on HCN3 channel gating. Since the IGL is a major input to the suprachiasmatic nucleus, regulation of pacemaking function by PIP(2) in the IGL may influence sleep and circadian rhythms.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico/fisiología , Neuronas/fisiología , Periodicidad , Fosfoinositido Fosfolipasa C/metabolismo , Tálamo/fisiología , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Potenciales de la Membrana/fisiología , Ratones , Neuronas/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio , Ratas , Tálamo/metabolismo
5.
Biochim Biophys Acta ; 1788(9): 1939-49, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19524546

RESUMEN

Investigation of the mechanistic bases and physiological importance of cAMP regulation of HCN channels has exploited an arginine to glutamate mutation in the nucleotide-binding fold, an approach critically dependent on the mutation selectively lowering the channel's nucleotide affinity. In apparent conflict with this, in intact Xenopus oocytes, HCN and HCN-RE channels exhibit qualitatively and quantitatively distinct responses to the tyrosine kinase inhibitor, genistein -- the estrogenic isoflavonoid strongly depolarizes the activation mid-point of HCN1-R538E, but not HCN1 channels (+9.8 mV + or - 0.9 versus +2.2 mV + or - 0.6) and hyperpolarizes gating of HCN2 (-4.8 mV + or - 1.0) but depolarizes gating of HCN2-R591E (+13.2 mV + or - 2.1). However, excised patch recording, X-ray crystallography and modeling reveal that this is not due to either a fundamental effect of the mutation on channel gating per se or of genistein acting as a mutation-sensitive partial agonist at the cAMP site. Rather, we find that genistein equivalently moves both HCN and HCN-RE channels closer to the open state (rendering the channels inherently easier to open but at a cost of decreasing the coupling energy of cAMP) and that the anomaly reflects a balance of these energetic effects with the isoform-specific inhibition of activation by the nucleotide gating ring and relief of this by endogenous cAMP. These findings have specific implications with regard to findings based on HCN-RE channels and kinase antagonists and general implications with respect to interpretation of drug effects in mutant channel backgrounds.


Asunto(s)
AMP Cíclico/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Genisteína/farmacología , Activación del Canal Iónico/fisiología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Ratones , Canales de Potasio/genética , Estructura Terciaria de Proteína
6.
Pflugers Arch ; 458(2): 259-72, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19034494

RESUMEN

We explored the structural basis of voltage sensing in the HCN1 hyperpolarization-activated cyclic nucleotide-gated cation channel by examining the relative orientation of the voltage sensor and pore domains. The opening of channels engineered to contain single cysteine residues at the extracellular ends of the voltage-sensing S4 (V246C) and pore-forming S5 (C303) domains is inhibited by formation of disulfide or cysteine:Cd(2+) bonds. As Cd(2+) coordination is promoted by depolarization, the S4-S5 interaction occurs preferentially in the closed state. The failure of oxidation to catalyze dimer formation, as assayed by Western blotting, indicates the V246C:C303 interaction occurs within a subunit. Intriguingly, a similar interaction has been observed in depolarization-activated Shaker voltage-dependent potassium (Kv) channels at depolarized potentials but such an intrasubunit interaction is inconsistent with the X-ray crystal structure of Kv1.2, wherein S4 approaches S5 of an adjacent subunit. These findings suggest channels of opposite voltage-sensing polarity adopt a conserved S4-S5 orientation in the depolarized state that is distinct from that trapped upon crystallization.


Asunto(s)
Cadmio/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Disulfuros/metabolismo , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Cisteína/metabolismo , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fenantrolinas/farmacología , Xenopus laevis
7.
Biochem Pharmacol ; 163: 493-508, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30768926

RESUMEN

BACKGROUND AND PURPOSE: In models of neuropathic pain, inhibition of HCN1 is anti-hyperalgesic. 2,6-di-iso-propyl phenol (propofol) and its non-anesthetic congener, 2,6-di-tert-butyl phenol, inhibit HCN1 channels by stabilizing closed state(s). EXPERIMENTAL APPROACH: Using in vitro electrophysiology and kinetic modeling, we systematically explore the contribution of ligand architecture to alkylphenol-channel coupling. KEY RESULTS: When corrected for changes in hydrophobicity (and propensity for intra-membrane partitioning), the decrease in potency upon 1-position substitution (NCO∼OH >> SH >>> F) mirrors the ligands' H-bond acceptor (NCO > OH > SH >>> F) but not donor profile (OH > SH >>> NCO∼F). H-bond elimination (OH to F) corresponds to a ΔΔG of ∼4.5 kCal mol-1 loss of potency with little or no disruption of efficacy. Substitution of compact alkyl groups (iso-propyl, tert-butyl) with shorter (ethyl, methyl) or more extended (sec-butyl) adducts disrupts both potency and efficacy. Ring saturation (with the obligate loss of both planarity and π electrons) primarily disrupts efficacy. CONCLUSIONS AND IMPLICATIONS: A hydrophobicity-independent decrement in potency at higher volumes suggests the alkylbenzene site has a volume of ≥800 Å3. Within this, a relatively static (with respect to ligand) H-bond donor contributes to initial binding with little involvement in generation of coupling energy. The influence of π electrons/ring planarity and alkyl adducts on efficacy reveals these aspects of the ligand present towards a face of the channel that undergoes structural changes during opening. The site's characteristics suggest it is "druggable"; introduction of other adducts on the ring may generate higher potency inverse agonists.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Oocitos/metabolismo , Fenoles/farmacología , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Modelos Moleculares , Oocitos/efectos de los fármacos , Fenoles/química , Canales de Potasio/química , Canales de Potasio/genética , Conformación Proteica , Isoformas de Proteínas , Relación Estructura-Actividad , Xenopus laevis
8.
J Neurosci ; 27(11): 2802-14, 2007 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-17360902

RESUMEN

Hyperpolarization-activated pacemaker currents (I(H)) contribute to the subthreshold properties of excitable cells and thereby influence behaviors such as synaptic integration and the appearance and frequency of intrinsic rhythmic activity. Accordingly, modulation of I(H) contributes to cellular plasticity. Although I(H) activation is regulated by a plethora of neurotransmitters, including some that act via phospholipase C (PLC), the only second messengers known to alter I(H) voltage dependence are cAMP, internal protons (H+(I)s), and phosphatidylinositol-4,5-phosphate. Here, we show that 4beta-phorbol-12-myristate-13-acetate (4betaPMA), a stereoselective C-1 diacylglycerol-binding site agonist, enhances voltage-dependent opening of wild-type and cAMP/H+(I)-uncoupled hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels, but does not alter gating of the plant hyperpolarization-activated channel, KAT1. Pharmacological analysis indicates that 4betaPMA exerts its effects on HCN gating via sequential activation of PKC and diacylglycerol kinase (DGK) coupled with upregulation of MAPK (mitogen-activated protein kinase) and phospholipase A2 (PLA2), but its action is independent of phosphoinositide kinase 3 (PI3K) and PI4K. Demonstration that both phosphatidic acid and arachidonic acid (AA) directly facilitate HCN gating suggests that these metabolites may serve as the messengers downstream of DGK and PLA2, respectively. 4BetaPMA-mediated suppression of the maximal HCN current likely arises from channel interaction with AA coupled with an enhanced membrane retrieval triggered by the same pathways that modulate channel gating. These results indicate that regulation of excitable cell behavior by neurotransmitter-mediated modulation of I(H) may be exerted via changes in three signaling lipids in addition to the allosteric actions of cAMP and H+(I)s.


Asunto(s)
Relojes Biológicos/fisiología , Diacilglicerol Quinasa/fisiología , Canales Iónicos/metabolismo , Lípidos/fisiología , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasas A/fisiología , Animales , Relojes Biológicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Femenino , Concentración de Iones de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Fosfolipasas A2 , Canales de Potasio , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Xenopus
9.
Methods Enzymol ; 602: 391-416, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588040

RESUMEN

The ability of a diverse group of agents to produce general anesthesia has long been an area of intense speculation and investigation. Over the past century, we have seen a paradigm shift from proposing that the anesthetized state arises from nonspecific interaction of anesthetics with the lipid membrane to the recognition that the function of distinct, and identifiable, membrane-embedded proteins is dramatically altered in the presence of intravenous and inhaled agents. Among proteinaceous targets, metabotropic and ionotropic receptors garnered much of the attention over the last 30 years, and it is only relatively recently that voltage-gated ion channels have clearly and rigorously been shown to be important molecular targets. In this review, we will consider the experimental issues relevant to two important ion channel anesthetic targets, HCN and K2P.


Asunto(s)
Anestésicos/farmacología , Electrofisiología/métodos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Electrofisiología/instrumentación , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Neuronas , Oocitos , Técnicas de Placa-Clamp/instrumentación , Técnicas de Placa-Clamp/métodos , Xenopus laevis
10.
Trends Pharmacol Sci ; 37(7): 522-542, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27233519

RESUMEN

Neuropathic pain arises from injury to the nervous system. Conditions associated with neuropathic pain are diverse, and lesions and/or pathological changes in the central nervous system (CNS) or peripheral nervous system (PNS) can frequently, but not always, be identified. It is difficult to treat, with patients often on multiple, different classes of medications, all with appreciable adverse side effect profiles. Consequently, there is a pressing need for the development of new medications. The development of such therapeutics is predicated on a clear understanding of the relevant molecular and cellular processes that contribute to the development, and maintenance, of the neuropathic pain state. One proposed mechanism thought to contribute to the ontogeny of neuropathic pain is altered expression, trafficking, and functioning of ion channels expressed by primary sensory neurons. Here, we will focus on three voltage-gated ion channel families, CaV, HCN, and NaV, first reviewing the preclinical data and then the human data where it exists.


Asunto(s)
Canales Iónicos/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Sistema Nervioso Periférico/fisiología , Animales , Canales de Calcio Tipo N/fisiología , Canales de Calcio Tipo T/fisiología , Compuestos Heterocíclicos con 2 Anillos/uso terapéutico , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Iónicos/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Canal de Sodio Activado por Voltaje NAV1.9/fisiología , Neuralgia/fisiopatología , Sulfonamidas/uso terapéutico
11.
PLoS One ; 9(7): e101236, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24983358

RESUMEN

Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile "slow" channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.


Asunto(s)
AMP Cíclico/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Activación del Canal Iónico , Animales , Fenómenos Electrofisiológicos , Cinética , Oocitos/fisiología , Xenopus
12.
J Gen Physiol ; 131(3): 227-43, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18270171

RESUMEN

I(H) pacemaker channels carry a mixed monovalent cation current that, under physiological ion gradients, reverses at approximately -34 mV, reflecting a 4:1 selectivity for K over Na. However, I(H) channels display anomalous behavior with respect to permeant ions such that (a) open channels do not exhibit the outward rectification anticipated assuming independence; (b) gating and selectivity are sensitive to the identity and concentrations of externally presented permeant ions; (c) the channels' ability to carry an inward Na current requires the presence of external K even though K is a minor charge carrier at negative voltages. Here we show that open HCN channels (the hyperpolarization-activated, cyclic nucleotide sensitive pore forming subunits of I(H)) undergo a fast, voltage-dependent block by intracellular Mg in a manner that suggests the ion binds close to, or within, the selectivity filter. Eliminating internal divalent ion block reveals that (a) the K dependence of conduction is mediated via K occupancy of site(s) within the pore and that asymmetrical occupancy and/or coupling of these sites to flux further shapes ion flow, and (b) the kinetics of equilibration between K-vacant and K-occupied states of the pore (10-20 micros or faster) is close to the ion transit time when the pore is occupied by K alone ( approximately 0.5-3 micros), a finding that indicates that either ion:ion repulsion involving Na is adequate to support flux (albeit at a rate below our detection threshold) and/or the pore undergoes rapid, permeant ion-sensitive equilibration between nonconducting and conducting configurations. Biophysically, further exploration of the Mg site and of interactions of Na and K within the pore will tell us much about the architecture and operation of this unusual pore. Physiologically, these results suggest ways in which "slow" pacemaker channels may contribute dynamically to the shaping of fast processes such as Na-K or Ca action potentials.


Asunto(s)
Canales Iónicos/metabolismo , Animales , Conductividad Eléctrica , Electrofisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Canales Iónicos/antagonistas & inhibidores , Iones , Magnesio/farmacología , Oocitos , Potasio/metabolismo , Potasio/farmacología , Unión Proteica , Sodio/metabolismo , Sodio/farmacología , Espermidina/farmacología , Espermina/farmacología , Xenopus
13.
J Physiol ; 583(Pt 1): 37-56, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17569731

RESUMEN

Activation of native IH pacemaker channels and channels formed on heterologous expression of some isoforms of their pore forming HCN (hyperpolarization-activated, cyclic nucleotide-regulated) subunits is inhibited by the intravenous general anaesthetic propofol (2,6-diisopropylphenol). Here, we show that inhibition of homomeric HCN1 channels is mediated through anaesthetic association with the membrane embedded channel core, a domain that is highly conserved between this isoform and the relatively insensitive HCN2 and 4 subunits. Decoupling of HCN channel gating from cAMP and internal protons reveals that changes in these second messengers are neither necessary nor sufficient to account for propofol's actions. Modelling of the equilibrium and kinetic behaviour of HCN1 channels in the absence and presence of anaesthetic reveals that (1) gating is best described by models wherein closed and open states communicate via a voltage-independent reaction with no significant equilibrium occupancy of a deactivated open state at non-permissive voltages, and (2) propofol modifies gating by preferentially associating with closed-resting and closed-activated states but a low affinity interaction with the activated open state shapes the effect of the drug under physiological conditions. Our findings illuminate the mechanism of HCN channel gating and provide a framework that will facilitate development of propofol derivates that have altered pharmacological properties and therapeutic potentials.


Asunto(s)
Anestésicos Intravenosos/farmacología , Membrana Celular/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Propofol/farmacología , Animales , Membrana Celular/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Electrofisiología , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Modelos Biológicos , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio/fisiología , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/fisiología , Xenopus laevis
14.
J Pharmacol Exp Ther ; 315(2): 517-25, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16033909

RESUMEN

Propofol (2,6-diisopropylphenol) is a widely used intravenous general anesthetic, which has been reported to produce bradycardia in patients at concentrations associated with profound sedation and loss of consciousness. Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels conduct a monovalent cationic current I(h) (also known as I(q) or I(f)) that contributes to autorhythmicity in both the brain and heart. Here we studied the effects of propofol on recombinant HCN1, HCN2, and HCN4 channels and found that the drug inhibits and slows activation of all three channels at clinically relevant concentrations. In oocyte expression studies, HCN1 channel activation was most sensitive to slowing by propofol (EC(50) values of 5.6 +/- 1.0 microM for fast component and 31.5 +/- 7.5 microM for slow component). HCN1 channels also showed a marked propofol-induced hyperpolarizing shift in the voltage dependence of activation (EC(50) of 6.7 +/- 1.0 microM) and accelerated deactivation (EC(50) of 4.5 +/- 0.9 microM). Furthermore, propofol reduced heart rate in an isolated guinea pig heart preparation over the same range of concentrations. These data suggest that propofol modulation of HCN channel gating is an important molecular mechanism that can contribute to the depression of central nervous system function and also lead to bradyarrhythmias in patients receiving propofol during surgical anesthesia.


Asunto(s)
Anestésicos Intravenosos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Proteínas Musculares/efectos de los fármacos , Proteínas del Tejido Nervioso/efectos de los fármacos , Propofol/farmacología , Animales , Relojes Biológicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos , ADN Complementario/biosíntesis , ADN Complementario/genética , Electrocardiografía/efectos de los fármacos , Electrofisiología , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Oocitos/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Xenopus laevis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA