Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37595580

RESUMEN

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Asunto(s)
Autofagia , Vía de Señalización Hippo , Animales , Ratones , Supervivencia Celular , Tamaño de los Órganos
2.
Nature ; 620(7972): 181-191, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37380767

RESUMEN

The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.


Asunto(s)
Mama , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Mama/citología , Mama/inmunología , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Endoteliales/clasificación , Células Endoteliales/metabolismo , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Genómica , Inmunidad
3.
J Immunol ; 212(4): 576-585, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38180084

RESUMEN

SARS-CoV-2 variants of concern (VOCs) continue to evolve and reemerge with chronic inflammatory long COVID sequelae, necessitating the development of anti-inflammatory therapeutic molecules. Therapeutic effects of the receptor for advanced glycation end products (RAGE) were reported in many inflammatory diseases. However, a therapeutic effect of RAGE in COVID-19 has not been reported. In the present study, we investigated whether and how the RAGE-Ig fusion protein would have an antiviral and anti-inflammatory therapeutic effect in the COVID-19 system. The protective therapeutic effect of RAGE-Ig was determined in vivo in K18-hACE2 transgenic mice and Syrian golden hamsters infected with six VOCs of SARS-CoV-2. The underlying antiviral mechanism of RAGE-Ig was determined in vitro in SARS-CoV-2-infected human lung epithelial cells (BEAS-2B). Following treatment of K18-hACE2 mice and hamsters infected with various SARS-CoV-2 VOCs with RAGE-Ig, we demonstrated (1) significant dose-dependent protection (i.e., greater survival, less weight loss, lower virus replication in the lungs); (2) a reduction of inflammatory macrophages (F4/80+/Ly6C+) and neutrophils (CD11b+/Ly6G+) infiltrating the infected lungs; (3) a RAGE-Ig dose-dependent increase in the expression of type I IFNs (IFN-α and IFN-ß) and type III IFN (IFNλ2) and a decrease in the inflammatory cytokines (IL-6 and IL-8) in SARS-CoV-2-infected human lung epithelial cells; and (4) a dose-dependent decrease in the expression of CD64 (FcgR1) on monocytes and lung epithelial cells from symptomatic COVID-19 patients. Our preclinical findings revealed type I and III IFN-mediated antiviral and anti-inflammatory therapeutic effects of RAGE-Ig protein against COVID-19 caused by multiple SARS-CoV-2 VOCs.


Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Cricetinae , Humanos , Ratones , Animales , Mesocricetus , Receptor para Productos Finales de Glicación Avanzada/genética , Síndrome Post Agudo de COVID-19 , Ratones Transgénicos , Antivirales/farmacología , Antivirales/uso terapéutico , Modelos Animales de Enfermedad , Pulmón
4.
Ann Surg Oncol ; 30(8): 5132-5141, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37149550

RESUMEN

BACKGROUND: There is a paucity of targeted therapies for patients with pseudomyxoma peritonei (PMP) secondary to low-grade appendiceal mucinous neoplasms (LAMNs). Dysregulated metabolism has emerged as a hallmark of cancer, and the relationship of metabolomics and cancer is an area of active scientific exploration. We sought to characterize phenotypic differences found in peritoneal metastases (PM) derived from LAMN versus adenocarcinoma. METHODS: Tumors were washed with phosphate-buffered saline (PBS), microdissected, then dissociated in ice-cold methanol dried and reconstituted in pyridine. Samples were derivatized in tert-butyldimethylsilyl (TBDMS) and subjected to gas chromatography-coupled mass spectrometry. Metabolites were assessed based on a standard library. RNA sequencing was performed, with pathway and network analyses on differentially expressed genes. RESULTS: Eight peritoneal tumor samples were obtained and analyzed: LAMNs (4), and moderate to poorly differentiated adenocarcinoma (colon [1], appendix [3]). Decreases in pyroglutamate, fumarate, and cysteine in PM from LAMNs were found compared with adenocarcinoma. Analyses showed the differential gene expression was dominated by the prevalence of metabolic pathways, particularly lipid metabolism. The gene retinol saturase (RETSAT), downregulated by LAMN, was involved in the multiple metabolic pathways that involve lipids. Using network mapping, we found IL1B signaling to be a potential top-level modulation candidate. CONCLUSIONS: Distinct metabolic signatures may exist for PM from LAMN versus adenocarcinoma. A multitude of genes are differentially regulated, many of which are involved in metabolic pathways. Additional research is needed to identify the significance and applicability of targeting metabolic pathways in the potential development of novel therapeutics for these challenging tumors.


Asunto(s)
Adenocarcinoma Mucinoso , Adenocarcinoma , Neoplasias del Apéndice , Neoplasias Peritoneales , Seudomixoma Peritoneal , Humanos , Neoplasias Peritoneales/secundario , Adenocarcinoma Mucinoso/patología , Neoplasias del Apéndice/genética , Neoplasias del Apéndice/patología , Seudomixoma Peritoneal/patología , Redes y Vías Metabólicas
5.
BMC Infect Dis ; 23(1): 330, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194021

RESUMEN

BACKGROUND: While others have reported severe acute respiratory syndrome-related coronavirus 2(SARS-CoV-2) seroprevalence studies in health care workers (HCWs), we leverage the use of a highly sensitive coronavirus antigen microarray to identify a group of seropositive health care workers who were missed by daily symptom screening that was instituted prior to any epidemiologically significant local outbreak. Given that most health care facilities rely on daily symptom screening as the primary method to identify SARS-CoV-2 among health care workers, here, we aim to determine how demographic, occupational, and clinical variables influence SARS-CoV-2 seropositivity among health care workers. METHODS: We designed a cross-sectional survey of HCWs for SARS-CoV-2 seropositivity conducted from May 15th to June 30th 2020 at a 418-bed academic hospital in Orange County, California. From an eligible population of 5,349 HCWs, study participants were recruited in two ways: an open cohort, and a targeted cohort. The open cohort was open to anyone, whereas the targeted cohort that recruited HCWs previously screened for COVID-19 or work in high-risk units. A total of 1,557 HCWs completed the survey and provided specimens, including 1,044 in the open cohort and 513 in the targeted cohort. Demographic, occupational, and clinical variables were surveyed electronically. SARS-CoV-2 seropositivity was assessed using a coronavirus antigen microarray (CoVAM), which measures antibodies against eleven viral antigens to identify prior infection with 98% specificity and 93% sensitivity. RESULTS: Among tested HCWs (n = 1,557), SARS-CoV-2 seropositivity was 10.8%, and risk factors included male gender (OR 1.48, 95% CI 1.05-2.06), exposure to COVID-19 outside of work (2.29, 1.14-4.29), working in food or environmental services (4.85, 1.51-14.85), and working in COVID-19 units (ICU: 2.28, 1.29-3.96; ward: 1.59, 1.01-2.48). Amongst 1,103 HCWs not previously screened, seropositivity was 8.0%, and additional risk factors included younger age (1.57, 1.00-2.45) and working in administration (2.69, 1.10-7.10). CONCLUSION: SARS-CoV-2 seropositivity is significantly higher than reported case counts even among HCWs who are meticulously screened. Seropositive HCWs missed by screening were more likely to be younger, work outside direct patient care, or have exposure outside of work.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Masculino , COVID-19/epidemiología , Estudios Transversales , Pandemias , Estudios Seroepidemiológicos , Personal de Salud , Anticuerpos Antivirales
6.
J Immunol ; 206(11): 2566-2582, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33911008

RESUMEN

Over the last two decades, there have been three deadly human outbreaks of coronaviruses (CoVs) caused by SARS-CoV, MERS-CoV, and SARS-CoV-2, which has caused the current COVID-19 global pandemic. All three deadly CoVs originated from bats and transmitted to humans via various intermediate animal reservoirs. It remains highly possible that other global COVID pandemics will emerge in the coming years caused by yet another spillover of a bat-derived SARS-like coronavirus (SL-CoV) into humans. Determining the Ag and the human B cells, CD4+ and CD8+ T cell epitope landscapes that are conserved among human and animal coronaviruses should inform in the development of future pan-coronavirus vaccines. In the current study, using several immunoinformatics and sequence alignment approaches, we identified several human B cell and CD4+ and CD8+ T cell epitopes that are highly conserved in 1) greater than 81,000 SARS-CoV-2 genome sequences identified in 190 countries on six continents; 2) six circulating CoVs that caused previous human outbreaks of the common cold; 3) nine SL-CoVs isolated from bats; 4) nine SL-CoV isolated from pangolins; 5) three SL-CoVs isolated from civet cats; and 6) four MERS strains isolated from camels. Furthermore, the identified epitopes: 1) recalled B cells and CD4+ and CD8+ T cells from both COVID-19 patients and healthy individuals who were never exposed to SARS-CoV-2, and 2) induced strong B cell and T cell responses in humanized HLA-DR1/HLA-A*02:01 double-transgenic mice. The findings pave the way to develop a preemptive multiepitope pan-coronavirus vaccine to protect against past, current, and future outbreaks.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T , Genoma Viral/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
7.
J Infect Dis ; 221(2): 191-200, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31504647

RESUMEN

BACKGROUND: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide. Here, we determined the ability of a C. trachomatis recombinant major outer membrane protein (rMOMP) vaccine to elicit cross-serogroup protection. METHODS: Female C3H/HeN mice were vaccinated by mucosal and systemic routes with C. trachomatis serovar D (UW-3/Cx) rMOMP and challenged in the ovarian bursa with serovars D (UW-3/Cx), D (UCI-96/Cx), E (IOL-43), or F (N.I.1). CpG-1826 and Montanide ISA 720 were used as adjuvants. RESULTS: Immune responses following vaccination were more robust against the most closely related serovars. Following a genital challenge (as determined by number of mice with positive vaginal cultures, number of positive cultures, number of inclusion forming units recovered, and number of days with positive cultures) mice challenged with C. trachomatis serovars of the same complex were protected but not those challenged with serovar F (N.I.1) from a different subcomplex. Females were caged with male mice. Based on fertility rates, number of embryos, and hydrosalpinx formation, vaccinated mice were protected against challenges with serovars D (UW-3/Cx), D (UCI-96/Cx), and E (IOL-43) but not F (N.I.1). CONCLUSIONS: This is the first subunit vaccine shown to protect mice against infection, pathology, and infertility caused by different C. trachomatis serovars.


Asunto(s)
Infecciones por Chlamydia/prevención & control , Protección Cruzada/inmunología , Infertilidad Femenina/prevención & control , Porinas/inmunología , Vacunas Sintéticas/inmunología , Vagina/microbiología , Animales , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/inmunología , Chlamydia trachomatis/aislamiento & purificación , Femenino , Inmunoglobulina G , Infertilidad Femenina/microbiología , Masculino , Ratones , Ratones Endogámicos C3H , Embarazo , Serogrupo , Vagina/inmunología
8.
Infect Immun ; 87(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30833332

RESUMEN

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen worldwide, and there is a need to control this epidemic. So far there is no established animal model in which both the horizontal and the vertical transmission of Chlamydia can be studied. To implement a horizontal sexual transmission model, male mice were inoculated in the meatus urethra with Chlamydia muridarum and they were caged with naive female mice. Urine and vaginal swab specimens were collected for culture. To study vertical transmission, newborns were euthanized and specimens were cultured. As controls, females were mated with sham-infected male mice. All C. muridarum-inoculated male mice had positive urine cultures. As determined by serology, all females caged with C. muridarum-inoculated males became infected, and 93% of them had positive vaginal swab specimen cultures. More females mated with C. muridarum-infected male mice (35%) than females mated with sham-infected male mice (0%) were infertile (P < 0.05). Also, C. muridarum-infected females delivered significantly fewer pups (3.8 ± 3.2/mouse) than control females (6.3 ± 1.6/mouse) (P < 0.05). Of the newborn mice, 32% were C. muridarum positive either in the lungs or in the intestines. Female mice housed with sham-infected males had no positive vaginal swab specimen cultures or C. muridarum-positive pups. This new mouse model of horizontal and vertical sexual transmission of Chlamydia closely parallels C. trachomatis sexual transmission in humans and may be a good model system to better understand the pathogenesis of these infections.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia muridarum/patogenicidad , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Animales , Anticuerpos Antibacterianos/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia muridarum/inmunología , Modelos Animales de Enfermedad , Femenino , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Masculino , Ratones , Infecciones Urinarias/microbiología , Vagina/microbiología
9.
Infect Immun ; 86(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29038126

RESUMEN

Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 105C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice (P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) (P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 104 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 105 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Antígeno HLA-DR4/inmunología , Infertilidad/inmunología , Infertilidad/microbiología , Ratones Transgénicos/inmunología , Administración Intranasal/métodos , Animales , Anticuerpos Antibacterianos/inmunología , Vacunas Bacterianas/inmunología , Línea Celular Tumoral , Infecciones por Chlamydia/microbiología , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/microbiología , Vacunación/métodos , Vagina/inmunología , Vagina/microbiología
10.
J Immunol ; 192(11): 5201-13, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24778450

RESUMEN

There is a need to implement a vaccine to protect against Chlamydia trachomatis infections. To test a new vaccine, mice were immunized with the Chlamydia muridarum native major outer membrane protein (nMOMP) solubilized with either amphipol A8-35 or the detergent Z3-14. OVA was used as a negative control, and mice were inoculated intranasally with C. muridarum as positive controls. Animals vaccinated with nMOMP mounted strong Chlamydia-specific humoral and cell-mediated immune responses. Mice vaccinated with nMOMP/A8-35 had a higher ratio of Abs to denatured elementary bodies (EB) over live EB, recognized more synthetic MOMP peptides and had higher neutralizing titers than sera from mice immunized with nMOMP/Z3-14. T cell lymphoproliferative responses and levels of IFN-γ were also higher in mice vaccinated with nMOMP/A8-35 than with nMOMP/Z3-14. Following immunization, animals were challenged intravaginally with C. muridarum. On the basis of the number of mice with positive vaginal cultures, length of vaginal shedding, total number of positive vaginal cultures, and number of Chlamydia inclusion forming units recovered, nMOMP/A8-35 elicited a more robust protection than nMOMP/Z3-14. By depleting T cells with Abs, we determined that CD4(+) and not CD8(+) T cells mediated the protection elicited by nMOMP/A8-35. Mice were subsequently mated, and based on the number of pregnant mice and number of embryos, animals that were vaccinated with nMOMP/A8-35 or nMOMP/Z3-14 had fertility rates equivalent to the positive control group immunized with live EB and the fertility controls. In conclusion, increased accessibility of epitopes in the nMOMP/A8-35 preparation may account for the very robust protection against infection and disease elicited by this vaccine.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Chlamydia/prevención & control , Chlamydia muridarum/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/farmacología , Vacunas Bacterianas/farmacología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Embarazo , Propilaminas/inmunología , Propilaminas/farmacología
11.
J Membr Biol ; 247(9-10): 1053-65, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24942817

RESUMEN

Chlamydia trachomatis is a major bacterial pathogen throughout the world. Although antibiotic therapy can be implemented in the case of early detection, a majority of the infections are asymptomatic, requiring the development of preventive measures. Efforts have focused on the production of a vaccine using the C. trachomatis major outer membrane protein (MOMP). MOMP is purified in its native (n) trimeric form using the zwitterionic detergent Z3-14, but its stability in detergent solutions is limited. Amphipols (APols) are synthetic polymers that can stabilize membrane proteins (MPs) in detergent-free aqueous solutions. Preservation of protein structure and optimization of exposure of the most effective antigenic regions can avoid vaccination with misfolded, poorly protective protein. Previously, we showed that APols maintain nMOMP secondary structure and that nMOMP/APol vaccine formulations elicit better protection than formulations using either recombinant or nMOMP solubilized in Z3-14. To achieve a greater understanding of the structural behavior and stability of nMOMP in APols, we have used several spectroscopic techniques to characterize its secondary structure (circular dichroism), tertiary and quaternary structures (immunochemistry and gel electrophoresis) and aggregation state (light scattering) as a function of temperature and time. We have also recorded NMR spectra of (15)N-labeled nMOMP and find that the exposed loops are detectable in APols but not in detergent. Our analyses show that APols protect nMOMP much better than Z3-14 against denaturation due to continuous heating, repeated freeze/thaw cycles, or extended storage at room temperature. These results indicate that APols can help improve MP-based vaccine formulations.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Vacunas Bacterianas/química , Chlamydia trachomatis/química , Portadores de Fármacos/química , Tensoactivos/química , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Química Farmacéutica , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Desnaturalización Proteica , Solubilidad
12.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712298

RESUMEN

Several classification systems have been developed to define tumor subtypes in colorectal cancer (CRC). One system proposes that tumor heterogeneity derives in part from distinct cancer stem cell populations that co-exist as admixtures of varying proportions. However, the lack of single cell resolution has prohibited a definitive identification of these types of stem cells and therefore any understanding of how each influence tumor phenotypes. Here were report the isolation and characterization of two cancer stem cell subtypes from the SW480 CRC cell line. We find these cancer stem cells are oncogenic versions of the normal Crypt Base Columnar (CBC) and Regenerative Stem Cell (RSC) populations from intestinal crypts and that their gene signatures are consistent with the "Admixture" and other CRC classification systems. Using publicly available single cell RNA sequencing (scRNAseq) data from CRC patients, we determine that RSC and CBC cancer stem cells are commonly co-present in human CRC. To characterize influences on the tumor microenvironment, we develop subtype-specific xenograft models and we define their tumor microenvironments at high resolution via scRNAseq. RSCs create differentiated, inflammatory, slow growing tumors. CBCs create proliferative, undifferentiated, invasive tumors. With this enhanced resolution, we unify current CRC patient classification schema with TME phenotypes and organization.

13.
Front Immunol ; 15: 1343716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605956

RESUMEN

Background: Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods: This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results: Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions: These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.


Asunto(s)
COVID-19 , Resfriado Común , Humanos , SARS-CoV-2 , Antígeno CTLA-4 , Linfocitos T CD8-positivos , Células T de Memoria , Receptor 2 Celular del Virus de la Hepatitis A , Receptor de Muerte Celular Programada 1 , Linfocitos T CD4-Positivos , Epítopos
14.
Front Immunol ; 15: 1328905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318166

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). Conclusion: A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Protección Cruzada , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito T/genética , Pandemias , SARS-CoV-2/genética
15.
bioRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405942

RESUMEN

The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.

16.
Infect Immun ; 81(5): 1741-50, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23478318

RESUMEN

To determine the ability of the major outer membrane protein (MOMP) to elicit cross-serovar protection, groups of mice were immunized by the intramuscular (i.m.) and subcutaneous (s.c.) routes with recombinant MOMP (rMOMP) from Chlamydia trachomatis serovars D (UW-3/Cx), E (Bour), or F (IC-Cal-3) or Chlamydia muridarum strain Nigg II using CpG-1826 and Montanide ISA 720 VG as adjuvants. Negative-control groups were immunized i.m. and s.c. with Neisseria gonorrhoeae recombinant porin B (Ng-rPorB) or i.n. with Eagle's minimal essential medium (MEM-0). Following vaccination, the mice developed antibodies not only against the homologous serovar but also against heterologous serovars. The rMOMP-vaccinated animals also mounted cell-mediated immune responses as assessed by a lymphoproliferative assay. Four weeks after the last immunization, mice were challenged i.n. with 10(4) inclusion-forming units (IFU) of C. muridarum. The mice were weighed for 10 days and euthanized, and the number of IFU in their lungs was determined. At 10 days postinfection (p.i.), mice immunized with the rMOMP of C. muridarum or C. trachomatis D, E, or F had lost 4%, 6%, 8%, and 8% of their initial body weight, respectively, significantly different from the negative-control groups (Ng-rPorB, 13%; MEM-0, 19%; P < 0.05). The median number of IFU recovered from the lungs of mice immunized with C. muridarum rMOMP was 0.13 × 10(6). The median number of IFU recovered from mice immunized with rMOMP from serovars D, E, and F were 0.38 × 10(6), 7.56 × 10(6), and 11.94 × 10(6) IFU, respectively. All the rMOMP-immunized animals had significantly less IFU than the Ng-rPorB (40 × 10(6))- or MEM-0 (70 × 10(6))-immunized mice (P < 0.05). In conclusion, vaccination with rMOMP can elicit protection against homologous and heterologous Chlamydia serovars.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/prevención & control , Chlamydia trachomatis/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Peso Corporal/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia muridarum/aislamiento & purificación , Recuento de Colonia Microbiana , Femenino , Inmunidad Humoral/fisiología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Linfocitos T/inmunología , Vacunación/métodos
17.
Infect Immun ; 81(1): 303-10, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23132491

RESUMEN

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the etiologic agent of blinding trachoma. Intracellular signaling pathways leading to host cell inflammation and innate immunity to Chlamydia include those mediated by Toll-like receptors (TLRs) and nucleotide binding oligomerization domain 1 (Nod1) protein. In epithelial cells, TLR-dependent signaling contributes to local immune responses via induction of inflammatory mediators. There is evidence that TLR3, TLR4, and, particularly, TLR2 are critical for Chlamydia-mediated host cell activation and pathology. Despite the importance of TLR2, major chlamydial TLR2 antigens have not been identified so far. Numerous bacterial porins are known TLR2 agonists, i.e., porins from Neisseriae, Shigella, Salmonella, Haemophilus influenzae, and Fusobacterium nucleatum, which share structural and functional similarities with the chlamydial major outer membrane protein (MOMP), a strong antigen candidate for a potential vaccine against C. trachomatis. We describe the ability of purified, detergent-free MOMP to signal via TLR2 in vitro in TLR-overexpressing cells and TLR2-competent human reproductive tract epithelial cell lines. Using MOMP formed in pure protein micelles (proteosomes), we show the induction of TLR2-dependent interleukin-8 (IL-8) and IL-6 secretion in vitro, the involvement of TLR1 as a TLR2 coreceptor, and the activation of both NF-κB and mitogen-activated protein (MAP) kinase intracellular pathways. Interestingly, MOMP proteosomes induce cytokine secretion in endocervical epithelial cells (End/E6E7) but not in urethral epithelial cells (THUECs). A detailed understanding of the TLR2-dependent molecular mechanisms that characterize the effect of MOMP proteosomes on host cells may provide new insights for its successful development as an immunotherapeutic target against Chlamydia.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptor Toll-Like 2/metabolismo , Línea Celular , Línea Celular Tumoral , Infecciones por Chlamydia/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células HEK293 , Células HeLa , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Micelas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Porinas/metabolismo , Transducción de Señal , Receptor Toll-Like 1/metabolismo
18.
Microbiol Spectr ; : e0388022, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722961

RESUMEN

Pooling of samples can increase throughput and reduce costs for large-scale SARS-CoV-2 testing when incidence is low. In a cross-sectional study of serial SARS-CoV-2 sampling of staff and residents at three nursing homes, laboratory labor constraints limited the feasibility of pooling prior to the maximal incidence that favored cost savings. IMPORTANCE This study highlights the pragmatic considerations surrounding SARS-CoV-2 sample pooling beyond accuracy and costs. We performed a cost analysis to determine the percent positivity at which pooling would reduce costs versus single testing. We found that the need for a stable amount of daily work hours staffed by a highly trained workforce was a major limitation in pooling as test positivity increased. For the COVID-19 pandemic and future pandemic threats, laboratories should carefully consider the thresholds at which sample pooling is beneficial, with a particular focus on the impact on laboratory staff.

19.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292861

RESUMEN

Background: The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods: In the present study, we designed a multi-epitope-based Coronavirus vaccine that incorporated B, CD4+, and CD8+ T cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results: The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells; and (iii) provides robust protection against virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529). Conclusions: A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that cleared the virus, and reduced COVID-19-related lung pathology and death caused by multiple SARS-CoV-2 VOCs.

20.
bioRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163043

RESUMEN

The adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics data profiled 535,941 cells from 62 women, and 120,024 nuclei from 20 women, identifying 11 major cell types and 53 cell states. These data revealed abundant pericyte, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Our spatial mapping using three technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells in the ducts and lobules, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide an unprecedented reference of adult normal breast tissue for studying mammary biology and disease states such as breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA