Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Transplant ; 37(11): e15073, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37577923

RESUMEN

BACKGROUND: A history of congenital heart disease and previous transplantation are each independently associated with worse survival following pediatric heart transplantation. This study aimed to evaluate the characteristics and outcomes of children undergoing repeat heart transplantation in the United States based on the underlying diagnosis. METHODS: The United Network for Organ Sharing database was used to identify 8111 patients aged <18 years undergoing isolated heart transplantation from 2000 to 2021, including 435 (5.4%) repeat transplants. Restricted cubic spline analysis assessed the non-linear relationship between inter-transplant interval and the primary outcome of all-cause mortality or re-transplantation. Multivariable Cox regression assessed the impact of re-transplantation on the primary outcome. Median follow-up was 5.0 (interquartile range 1.9-9.9) years. RESULTS: Repeat transplant patients were older (median age 12 vs. 4 years; p < .001), and less likely to be in UNOS status 1A (66.0%, n = 287 vs. 81.0% n = 6217; p < .001) than primary transplant patients. Freedom from the primary outcome was 51.4% (95% confidence interval [CI] 45.5-57.2) among repeat transplants and 70.5% (95% CI 69.2-71.8) among primary transplants at 10 years (p < .001). Among repeat transplant patients, the relative hazard of the primary outcome became non-significant when the inter-transplant interval >3.6 years. Congenital heart disease was an independent predictor of mortality among primary (HR 1.8, 95% CI 1.6-1.9) but not repeat transplant (HR 1.1, 95% CI .8-1.6) patients. CONCLUSIONS: Long-term outcomes remain poor for patients undergoing repeat heart transplantation, particularly those with an inter-transplant interval <3.6 years. Underlying diagnosis does not impact outcomes after repeat transplantation, after accounting for other risk factors.


Asunto(s)
Cardiopatías Congénitas , Trasplante de Corazón , Humanos , Niño , Estados Unidos/epidemiología , Resultado del Tratamiento , Estudios Retrospectivos , Factores de Riesgo , Sistema de Registros
2.
Proc Natl Acad Sci U S A ; 115(32): 8161-8166, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038027

RESUMEN

Copper is an essential cofactor of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Inherited loss-of-function mutations in several genes encoding proteins required for copper delivery to CcO result in diminished CcO activity and severe pathologic conditions in affected infants. Copper supplementation restores CcO function in patient cells with mutations in two of these genes, COA6 and SCO2, suggesting a potential therapeutic approach. However, direct copper supplementation has not been therapeutically effective in human patients, underscoring the need to identify highly efficient copper transporting pharmacological agents. By using a candidate-based approach, we identified an investigational anticancer drug, elesclomol (ES), that rescues respiratory defects of COA6-deficient yeast cells by increasing mitochondrial copper content and restoring CcO activity. ES also rescues respiratory defects in other yeast mutants of copper metabolism, suggesting a broader applicability. Low nanomolar concentrations of ES reinstate copper-containing subunits of CcO in a zebrafish model of copper deficiency and in a series of copper-deficient mammalian cells, including those derived from a patient with SCO2 mutations. These findings reveal that ES can restore intracellular copper homeostasis by mimicking the function of missing transporters and chaperones of copper, and may have potential in treating human disorders of copper metabolism.


Asunto(s)
Antineoplásicos/farmacología , Cobre/deficiencia , Drogas en Investigación/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Hidrazinas/farmacología , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Transporte Biológico/genética , Proteínas Portadoras/genética , Línea Celular , Coenzimas/deficiencia , Cobre/uso terapéutico , Transportador de Cobre 1 , Suplementos Dietéticos , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Drogas en Investigación/uso terapéutico , Fibroblastos , Humanos , Hidrazinas/uso terapéutico , Proteínas de Transporte de Membrana/genética , Errores Innatos del Metabolismo/tratamiento farmacológico , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Ratas , Saccharomyces cerevisiae , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Hum Mol Genet ; 23(13): 3596-606, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24549041

RESUMEN

Mitochondrial respiratory chain biogenesis is orchestrated by hundreds of assembly factors, many of which are yet to be discovered. Using an integrative approach based on clues from evolutionary history, protein localization and human genetics, we have identified a conserved mitochondrial protein, C1orf31/COA6, and shown its requirement for respiratory complex IV biogenesis in yeast, zebrafish and human cells. A recent next-generation sequencing study reported potential pathogenic mutations within the evolutionarily conserved Cx9CxnCx10C motif of COA6, implicating it in mitochondrial disease biology. Using yeast coa6Δ cells, we show that conserved residues in the motif, including the residue mutated in a patient with mitochondrial disease, are essential for COA6 function, thus confirming the pathogenicity of the patient mutation. Furthermore, we show that zebrafish embryos with zfcoa6 knockdown display reduced heart rate and cardiac developmental defects, recapitulating the observed pathology in the human mitochondrial disease patient who died of neonatal hypertrophic cardiomyopathy. The specific requirement of Coa6 for respiratory complex IV biogenesis, its intramitochondrial localization and the presence of the Cx9CxnCx10C motif suggested a role in mitochondrial copper metabolism. In support of this, we show that exogenous copper supplementation completely rescues respiratory and complex IV assembly defects in yeast coa6Δ cells. Taken together, our results establish an evolutionarily conserved role of Coa6 in complex IV assembly and support a causal role of the COA6 mutation in the human mitochondrial disease patient.


Asunto(s)
Cobre/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Humanos , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Piel/citología , Pez Cebra
5.
Nat Commun ; 11(1): 4866, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978391

RESUMEN

Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Canales de Calcio , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Homeostasis , Humanos , Proteínas de la Membrana/genética , Redes y Vías Metabólicas/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcriptoma
6.
Cell Rep ; 15(8): 1673-85, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27184846

RESUMEN

Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.


Asunto(s)
Canales de Calcio/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Autofagia , Calcio/metabolismo , Canales de Calcio/química , Movimiento Celular , Células Endoteliales/metabolismo , Eliminación de Gen , Células HEK293 , Células HeLa , Corazón/fisiología , Humanos , Ratones Noqueados , Proteínas Mitocondriales/química , Neovascularización Fisiológica , Unión Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA