Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 588(7836): 71-76, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230334

RESUMEN

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research1,2. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures. Ferroelectric materials show electrically switchable electric dipoles, which are usually formed by spatial separation between the average centres of positive and negative charge within the unit cell. On this basis, it is difficult to imagine graphene-a material composed of only carbon atoms-exhibiting ferroelectricity3. However, in this work we realize switchable ferroelectricity in Bernal-stacked bilayer graphene sandwiched between two hexagonal boron nitride layers. By introducing a moiré superlattice potential (via aligning bilayer graphene with the top and/or bottom boron nitride crystals), we observe prominent and robust hysteretic behaviour of the graphene resistance with an externally applied out-of-plane displacement field. Our systematic transport measurements reveal a rich and striking response as a function of displacement field and electron filling, and beyond the framework of conventional ferroelectrics. We further directly probe the ferroelectric polarization through a non-local monolayer graphene sensor. Our results suggest an unconventional, odd-parity electronic ordering in the bilayer graphene/boron nitride moiré system. This emergent moiré ferroelectricity may enable ultrafast, programmable and atomically thin carbon-based memory devices.

2.
J Am Chem Soc ; 146(7): 4687-4694, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324275

RESUMEN

The optical response of two-dimensional (2D) perovskites, often referred to as natural quantum wells, is primarily governed by excitons, whose properties can be readily tuned by adjusting the perovskite layer thickness. We have investigated the exciton fine structure splitting in the archetypal 2D perovskite (PEA)2(MA)n-1PbnI3n+1 with varying numbers of inorganic octahedral layers n = 1, 2, 3, and 4. We demonstrate that the in-plane excitonic states exhibit splitting and orthogonally oriented dipoles for all confinement regimes. The evolution of the exciton states in an external magnetic field provides further insights into the g-factors and diamagnetic coefficients. With increasing n, we observe a gradual evolution of the excitonic parameters characteristic of a 2D to three-dimensional transition. Our results provide valuable information concerning the evolution of the optoelectronic properties of 2D perovskites with the changing confinement strength.

3.
Nat Mater ; 22(2): 161-169, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36702886

RESUMEN

Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.

4.
Nano Lett ; 23(4): 1128-1134, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36780509

RESUMEN

Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.

5.
J Am Chem Soc ; 145(34): 19042-19048, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37605330

RESUMEN

The interaction between excitons and photons underlies a range of emergent technologies, such as directional light emission, molecular lasers, photonic circuits, and polaritonic devices. Two of the key parameters that impact exciton-photon coupling are the binding energy of excitons and the relative orientations between the exciton dipole and photon field. Tightly bound excitons are typically found in molecular crystals, where nevertheless the angular relationship of excitons with photon fields is difficult to control. Here, we demonstrate directional exciton dipoles and photon fields, anchored by metal-ligand coordination. In a pyrene-porphyrin bichromophoric metal-organic framework (MOF), we observe that the perpendicular arrangement of the pyrene- and porphyrin-based exciton dipoles engenders orthogonal polarizations of their respective emissions. The alignment of the directional exciton and photon fields gives rise to an anisotropic waveguide effect, where the pyrene- and the porphyrin-based emissions show distinct spatial distribution within microplate-shaped MOF crystals. This capability to simultaneously host heterogenous excitonic states and anisotropic photon fields points toward MOFs' yet-to-be-realized potential as a platform for advancing the frontier in the field of exciton-photonics, which centers around engineering emergent properties from the interplay between excitons and photons.

6.
J Am Chem Soc ; 145(9): 5183-5190, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811999

RESUMEN

Organic-inorganic hybrid materials present new opportunities for creating low-dimensional structures with unique light-matter interaction. In this work, we report a chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-difluorophenylselenolate─AgSePhF2(2,6), a new member of the broader class of hybrid low-dimensional semiconductors, metal-organic chalcogenolates. While silver phenylselenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor, introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural transition from 2D sheets to 1D chains. Density functional theory calculations reveal that AgSePhF2 (2,6) has strongly dispersive conduction and valence bands along the 1D crystal axis. Visible photoluminescence centered around λp ≈ 570 nm at room temperature exhibits both prompt (110 ps) and delayed (36 ns) components. The absorption spectrum exhibits excitonic resonances characteristic of low-dimensional hybrid semiconductors, with an exciton binding energy of approximately 170 meV as determined by temperature-dependent photoluminescence. The discovery of an emissive 1D silver organoselenolate highlights the structural and compositional richness of the chalcogenolate material family and provides new insights for molecular engineering of low-dimensional hybrid organic-inorganic semiconductors.

7.
J Chem Phys ; 157(10): 104201, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36109245

RESUMEN

Transient microscopy has emerged as a powerful tool for imaging the diffusion of excitons and free charge carriers in optoelectronic materials. In many excitonic materials, extraction of diffusion coefficients can be simplified because of the linear relationship between signal intensity and local excited state population. However, in materials where transport is dominated by free charge carriers, extracting diffusivities accurately from multidimensional data is complicated by the nonlinear dependence of the measured signal on the local charge carrier density. To obtain accurate estimates of charge carrier diffusivity from transient microscopy data, statistically robust fitting algorithms coupled to efficient 3D numerical solvers that faithfully relate local carrier dynamics to raw experimental measurables are sometimes needed. Here, we provide a detailed numerical framework for modeling the spatiotemporal dynamics of free charge carriers in bulk semiconductors with significant solving speed reduction and for simulating the corresponding transient photoluminescence microscopy data. To demonstrate the utility of this approach, we apply a fitting algorithm using a Markov chain Monte Carlo sampler to experimental data on bulk CdS and methylammonium lead bromide (MAPbBr3) crystals. Parameter analyses reveal that transient photoluminescence microscopy can be used to obtain robust estimates of charge carrier diffusivities in optoelectronic materials of interest, but that other experimental approaches should be used for obtaining carrier recombination constants. Additionally, simplifications can be made to the fitting model depending on the experimental conditions and material systems studied. Our open-source simulation code and fitting algorithm are made freely available to the scientific community.

8.
Nano Lett ; 21(11): 4809-4815, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048260

RESUMEN

The strength of interlayer coupling critically affects the physical properties of 2D materials such as black phosphorus (BP), where the electronic structure depends sensitively on layer thickness. Rigid-layer vibrations reflect directly the interlayer coupling strength in 2D van der Waals solids, but measurement of these characteristic frequencies is made difficult by sample instability and small Raman scattering cross sections in atomically thin elemental crystals. Here, we overcome these challenges in BP by performing resonance-enhanced low-frequency Raman scattering under an argon-protective environment. Interlayer breathing modes for atomically thin BP were previously unobservable under conventional (nonresonant) excitation but became strongly enhanced when the excitation energy matched the sub-band electronic transitions of few-layer BP, down to bilayer thicknesses. The measured out-of-plane interlayer force constant was found to be 10.1 × 1019 N/m3 in BP, which is comparable to graphene. Accurate characterization of the interlayer coupling strength lays the foundation for future exploration of BP twisted structures and heterostructures.

9.
J Am Chem Soc ; 143(48): 20256-20263, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34806381

RESUMEN

The use of two-dimensional (2D) materials in next-generation technologies is often limited by small lateral size and/or crystal defects. Here, we introduce a simple chemical strategy to improve the size and overall quality of 2D metal-organic chalcogenolates (MOCs), a new class of hybrid organic-inorganic 2D semiconductors that can exhibit in-plane anisotropy and blue luminescence. By inducing the formation of silver-amine complexes during a solution growth method, we increase the average size of silver phenylselenolate (AgSePh) microcrystals from <5 µm to >1 mm, while simultaneously extending the photoluminescence lifetime and suppressing mid-gap emission. Mechanistic studies using 77Se NMR suggest dual roles for the amine in promoting the formation of a key reactive intermediate and slowing down the final conversion to AgSePh. Finally, we show that amine addition is generalizable to the synthesis of other 2D MOCs, as demonstrated by the growth of single crystals of silver 4-methylphenylselenolate (AgSePhMe), a novel member of the 2D MOC family.

10.
Nat Mater ; 19(4): 412-418, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32042078

RESUMEN

The composition of perovskite has been optimized combinatorially such that it often contains six components (AxByC1-x-yPbXzY3-z) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm2 s-1, while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm2 s-1 in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics.

11.
Annu Rev Phys Chem ; 71: 1-30, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756129

RESUMEN

We review recent advances in the characterization of electronic forms of energy transport in emerging semiconductors. The approaches described all temporally and spatially resolve the evolution of initially localized populations of photogenerated excitons or charge carriers. We first provide a comprehensive background for describing the physical origin and nature of electronic energy transport both microscopically and from the perspective of the observer. We introduce the new family of far-field, time-resolved optical microscopies developed to directly resolve not only the extent of this transport but also its potentially temporally and spatially dependent rate. We review a representation of examples from the recent literature, including investigation of energy flow in colloidal quantum dot solids, organic semiconductors, organic-inorganic metal halide perovskites, and 2D transition metal dichalcogenides. These examples illustrate how traditional parameters like diffusivity are applicable only within limited spatiotemporal ranges and how the techniques at the core of this review,especially when taken together, are revealing a more complete picture of the spatiotemporal evolution of energy transport in complex semiconductors, even as a function of their structural heterogeneities.

12.
J Am Chem Soc ; 142(21): 9675-9685, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32401509

RESUMEN

Significant experimental and theoretical work has been devoted to understanding why colloidal nanocrystals (NCs) self-assemble into such a diverse array of structures. Previous research has focused on factors such as nanocrystal charging, the ratio of ligand length to core radius, core faceting, and ligand coverage among many controllable parameters. Here, we demonstrate that the presence of unbound/free ligand in colloidal suspension plays a pivotal role in determining NC superlattice (SL) structure and orientation. We investigated the structure of PbS NC SLs with grazing-incidence small-angle X-ray scattering (GISAXS) while using nuclear magnetic resonance (NMR) to quantify the bound and unbound ligand populations. Through a series of controlled additions of unbound oleic acid to solutions of identically sized oleate-capped NCs with different bound ligand coverages, we mapped the continuous evolution of the final SL structure from body-centered cubic (BCC) to face-centered cubic (FCC) through a series of body-centered tetragonal (BCT) intermediate phases. Strikingly, this phase transformation pathway is identical to the uniaxial contraction observed when evaporating solvent, suggesting that unbound ligand and solvent occupy a similar space within the SL unit cell. Molecular dynamics simulations of single NCs confirm that unbound ligand readily swells the bound ligand shell over all exposed NC facets-even without explicit rebinding to the NC surface-and we establish limitations on the range of tunability via this approach based on Flory-Rehner gel-swelling theory. Furthermore, we explain the effect of high free ligand fraction on the early time dynamics of spin coating concentrated colloidal dispersions, which can disrupt the formation of long-range SL order. The controlled addition of unbound ligand represents a novel mechanism for directing superlattice structure and highlights the experimental importance of fully characterizing bound and unbound ligand populations.

13.
J Chem Phys ; 153(4): 044710, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752687

RESUMEN

We report the low-frequency Raman spectrum (ω = 10 cm-1-150 cm-1) of a wide variety of alkylammonium iodide based 2D lead halide perovskites (2D LHPs) as a function of A-site cation (MA = methylammonium and FA = formamidinium), octahedral layer thickness (n = 2-4), organic spacer chain length (butyl-, pentyl-, hexyl-), and sample temperature (T = 77 K-293 K). Using density functional theory calculations under the harmonic approximation for n = 2 BA:MAPbI, we assign several longitudinal/transverse optical phonon modes between 30 cm-1 and 100 cm-1, the eigendisplacements of which are analogous to that observed previously for octahedral twists/distortions in bulk MAPbI. Additionally, we propose an alternative assignment for low-frequency modes below this band (<30 cm-1) as zone-folded longitudinal acoustic phonons corresponding to the periodicity of the entire layered structure. We compare measured spectra to predictions of the Rytov elastic continuum model for zone-folded dispersion in layered structures. Our results are consistent across the various 2D LHPs studied herein, with energetic shifts of optical phonons corresponding to microscopic structural differences between materials and energetic shifts of acoustic phonons according to changes in the periodicity and elastic properties of the perovskite/organic subphases. This study highlights the importance of both the local atomic order and the superlattice structure on the vibrational properties of layered 2D materials.

14.
J Am Chem Soc ; 141(48): 18994-19001, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689101

RESUMEN

Electron-phonon coupling in two-dimensional nanomaterials plays a fundamental role in determining their physical properties. Such interplay is particularly intriguing in semiconducting black phosphorus (BP) due to the highly anisotropic nature of its electronic structure and phonon dispersions. Here we report the direct observation of symmetry-dependent electron-phonon coupling in BP by performing the polarization-selective resonance Raman measurement in the visible and ultraviolet regimes, focusing on the out-of-plane Ag1 and in-plane Ag2 phonon modes. Their intrinsic resonance Raman excitation profiles (REPs) were extracted and quantitatively compared. The in-plane Ag2 mode exhibits remarkably strong resonance enhancement across the excitation wavelengths when the excitation polarization is parallel to the armchair (Ag2//AC) direction. In contrast, a dramatically weak resonance effect was observed for the same mode with the polarization parallel to zigzag (Ag2//ZZ) direction and for the out-of-plane Ag1 mode (Ag1//AC and Ag1//ZZ). Analysis on quantum perturbation theory and first-principles calculations on the anisotropic electron distributions in BP demonstrated that electron-phonon coupling considering the symmetry of the involved excited states and phonon vibration patterns is responsible for this phenomenon. Further analysis of the polarization-dependent REPs for Ag phonons allows us to resolve the existing controversies on the physical origin of Raman anomaly in BP and its dependence on excitation energy, sample thickness, phonon modes, and crystalline orientation. Our study gives deep insights into the underlying interplay between electrons and phonons in BP and paves the way for manipulating the electron-phonon coupling in anisotropic nanomaterials for future device applications.

15.
J Phys Chem A ; 123(17): 3893-3902, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30900887

RESUMEN

Global and target analysis techniques are ubiquitous tools for interpreting transient absorption (TA) spectra. However, characterizing uncertainty in the kinetic parameters and component spectra derived from these fitting procedures can be challenging. Furthermore, fitting TA spectra of inorganic nanomaterials where the component spectra of different excited states are nearly or completely overlapped is particularly problematic. Here, we present a target analysis model for extracting excited-state spectra and dynamics from TA data using a Markov chain Monte Carlo (MCMC) sampler to visualize and understand uncertainty in the model fits. We demonstrate the utility of this approach by extracting the overlapping component spectra and dynamics of single- and biexciton states in CsPbBr3 nanocrystals. Significantly, refinement of the component spectra is accomplished by fitting the entire fluence-dependent series of ensemble TA data using the Poisson statistics of photon absorption, providing multiple checks for internal consistency. The MCMC method itself is highly general and can be applied to any data set or model framework to accurately characterize uncertainty in the fit and aid model selection when choosing between different models.

16.
J Chem Phys ; 150(24): 244702, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31255069

RESUMEN

Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemental properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal surface. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scattering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform nonlinear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of colloidal nanomaterials.

17.
Nano Lett ; 18(8): 5001-5006, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29932677

RESUMEN

Second-order nonlinear optical interactions, including second-harmonic generation (SHG) and sum-frequency generation (SFG), can reveal a wealth of information about chemical, electronic, and vibrational dynamics at the nanoscale. Here, we demonstrate a powerful and flexible new approach, called phase-modulated degenerate parametric amplification (DPA). The technique, which allows for facile retrieval of both the amplitude and phase of the second-order nonlinear optical response, has many advantages over conventional or heterodyne-detected SHG, including the flexibility to detect the signal at either the second harmonic or fundamental field wavelength. We demonstrate the capabilities of this approach by imaging multigrain flakes of single-layer MoS2. We identify the absolute crystal orientation of each MoS2 domain and resolve grain boundaries with high signal contrast and sub-diffraction-limited spatial resolution. This robust all-optical method can be used to characterize structure and dynamics in organic and inorganic systems, including biological tissue, soft materials, and metal and semiconductor nanostructures, and is particularly well-suited for imaging in media that are absorptive or highly scattering to visible and ultraviolet light.

18.
J Am Chem Soc ; 140(39): 12354-12358, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30235414

RESUMEN

Lateral heterostructures with planar integrity form the basis of two-dimensional (2D) electronics and optoelectronics. Here we report that, through a two-step chemical vapor deposition (CVD) process, high-quality lateral heterostructures can be constructed between metallic and semiconducting transition metal disulfide (TMD) layers. Instead of edge epitaxy, polycrystalline monolayer MoS2 in such junctions was revealed to nucleate from the vertices of multilayered VS2 crystals, creating one-dimensional junctions with ultralow contact resistance (0.5 kΩ·µm). This lateral contact contributes to 6-fold improved field-effect mobility for monolayer MoS2, compared to the conventional on-top nickel contacts. The all-CVD strategy presented here hence opens up a new avenue for all-2D-based synthetic electronics.

19.
Nat Mater ; 21(5): 497-499, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35505231

Asunto(s)
Puntos Cuánticos
20.
Opt Express ; 26(14): 18331-18340, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114014

RESUMEN

Time-resolved femtosecond stimulated Raman spectroscopy (FSRS) is a powerful tool for investigating ultrafast structural and vibrational dynamics in light absorbing systems. However, the technique generally requires exposing a sample to high laser pulse fluences and long acquisition times to achieve adequate signal-to-noise ratios. Here, we describe a time-resolved FSRS instrument built around a Yb ultrafast amplifier operating at 200 kHz, and address some of the unique challenges that arise at high repetition-rates. The setup includes detection with a 9 kHz CMOS camera and an improved dual-chopping scheme to reject scattering artifacts that occur in the 3-pulse configuration. The instrument demonstrates good signal-to-noise performance while simultaneously achieving a 3-6 fold reduction in pulse energy and a 5-10 fold reduction in acquisition time relative to comparable 1 kHz instruments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA