Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 21(8): 4547-4555, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30741305

RESUMEN

Tetrahedrites, a class of copper- and sulfur-rich minerals, exhibit inherently very low lattice thermal conductivity and adjustable electronic properties that make them interesting candidates for thermoelectric applications. Here, we investigate the influence of isovalent As substitution on the Sb site on the structural and transport properties (5-700 K) of the two solid solutions Cu12Sb4-xAsxS13 and Cu10Co2Sb4-yAsyS13 (0 ≤ x, y ≤ 4). Electronic band structure calculations predict that As has only a weak influence on the valence bands and hence, on the p-type metallic character of Cu12Sb4S13. In agreement with these predictions, all the samples of the series Cu12Sb4-xAsxS13 exhibit p-type metallic behavior with relatively low electrical resistivity and moderate thermopower values that only slightly evolve with the As content. In contrast, the substitution of Co for Cu in As-rich samples seems less favorable as suggested by a decrease in the Co concentration with increasing the As content. This trend leads to a concomitant increase in the electrical resistivity and thermopower leaving the ZT values practically unchanged with respect to purely Cu-based samples. As a result, peak ZT values ranging between 0.60 and 0.75 are achieved at 700 K for both series. The lack of significant variations in the ZT values confirms the robustness of the thermoelectric performances of tetrahedrites with respect to variations in the Sb-to-As ratio.

2.
Phys Chem Chem Phys ; 20(18): 12948-12957, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29701746

RESUMEN

Distortion of the density of states by an impurity-induced resonant level has been shown to provide an effective strategy to improve the thermoelectric performance of semiconductors such as Bi2Te3, PbTe or SnTe. Here, combining first-principles calculations and transport property measurements, we demonstrate that Sn is a resonant impurity that distorts the valence band edge in p-type ß-As2Te3. This remarkable effect is characterized as a prominent, sharp peak in the electronic density of states near the Fermi level. To illustrate the particular influence of Sn on the thermopower of ß-As2Te3, the theoretical Ioffe-Pisarenko curve, computed within the Boltzmann transport theory, is compared with the experimental results obtained on three series of polycrystalline samples with substitution of Ga and Bi for As and I for Te. While Ga and I behave as conventional, rigid-band-like dopants and follow theoretical predictions, Sn results in significant deviations from the theoretical curve with a clear enhancement of the thermopower. Both electronic band structure calculations and transport property measurements provide conclusive evidence that this enhancement and hence, the good thermoelectric performances achieved at mid temperatures in ß-As2-xSnxTe3 can be attributed to a resonant level induced by Sn atoms. The possibility to induce resonant states in the electronic band structure of ß-As2Te3 opens new avenues to further optimize its thermoelectric performance.

3.
Inorg Chem ; 56(4): 2248-2257, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28177618

RESUMEN

We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As2Te3-xSex (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As2Te3-xSex crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As2Te3. The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As2Te3 exhibits very low lattice thermal conductivity κL, the substitution of Se for Te further lowers κL to 0.35 W m-1 K-1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.

4.
Phys Chem Chem Phys ; 19(37): 25697-25706, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28906522

RESUMEN

Herein, the correlation between electronic structure, transport and electrochemical properties of layered LixNi1-y-zCoyMnzO2 cathode material is revealed. Comprehensive experimental studies of physicochemical properties of LixNi1-y-zCoyMnzO2 cathode material (XRD, electrical conductivity, thermoelectric power) are supported by electronic structure calculations performed using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) to account for the chemical disorder. It is found that even small O defects (∼1%) could significantly modify electronic density of states DOS characteristics via the formation of extra broad peaks inside the former band gap leading to its substantial narrowing. The calculated DOS values and their changes near EF tend to support experimental findings with irregular changes in the sign of thermoelectric power as well as the behavior of electrical conductivity curves as a function of Li content. Furthermore, the variations of the electromotive force of the Li/Li+/LixNi1-y-zCoyMnzO2 cell (for 0 < x < 1) remains in a quite good agreement with the relative variation of EF on DOS calculated from the KKR-CPA method.

5.
Phys Chem Chem Phys ; 16(28): 14845-57, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24926480

RESUMEN

In this paper we would like to show a new approach to an explanation of the nature of the discharge-charge curve of Na/Na(+)/NaxCoO2-y batteries, which can justify the existence of the step-like characteristics. This is still an open problem, which until now had no proper description in the literature. On the basis of comprehensive experimental studies of physicochemical properties of NaxCoO2-y cathode material (XRD, electrical conductivity, thermoelectric power, electronic specific heat) supported by calculations performed using the DFT method with accounting for chemical disorder, it has been shown that the observed step-like character of the discharge curve reflects the variation of the chemical potential of electrons (Fermi level) in the density of states of NaxCoO2-y, which is anomalously perturbed by the presence of the oxygen vacancy defects and sodium ordering. Our studies of structural, electronic and thermal properties of NaxCoO2-y cathode material as a function of concentration of electrochemically intercalated sodium document strong and step-like shift of the position of the Fermi level during introduction of electrons in this process. This effect is coherently supported by the shape of calculated density of states (DOS) of NaxCoO2-y having included oxygen defects and sodium ordering.

6.
Materials (Basel) ; 15(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35160795

RESUMEN

Because of the large Seebeck coefficient, low thermal conductivity, and earth-abundant nature of components, tetrahedrites are promising thermoelectric materials. DFT calculations reveal that the additional copper atoms in Cu-rich Cu14Sb4S13 tetrahedrite can effectively engineer the chemical potential towards high thermoelectric performance. Here, the Cu-rich tetrahedrite phase was prepared using a novel approach, which is based on the solvothermal method and piperazine serving both as solvent and reagent. As only pure elements were used for the synthesis, the offered method allows us to avoid the typically observed inorganic salt contaminations in products. Prepared in such a way, Cu14Sb4S13 tetrahedrite materials possess a very high Seebeck coefficient (above 400 µVK-1) and low thermal conductivity (below 0.3 Wm-1K-1), yielding to an excellent dimensionless thermoelectric figure of merit ZT ≈ 0.65 at 723 K. The further enhancement of the thermoelectric performance is expected after attuning the carrier concentration to the optimal value for achieving the highest possible power factor in this system.

7.
Chem Mater ; 34(5): 2146-2160, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35281971

RESUMEN

Uncovering of the origin of intrinsically low thermal conductivity in novel crystalline solids is among the main streams in modern thermoelectricity. Because of their earth-abundant nature and environmentally friendly content, Cu-based thiospinels are attractive functional semiconductors, including thermoelectric (TE) materials. Herein, we report the crystal structure, as well as electronic and TE properties of four new Cu2MHf3S8 (M-Mn, Fe, Co, and Ni) thiospinels. The performed density functional theory calculations predicted the decrease of the band gap and transition from p- to n-type conductivity in the Mn-Fe-Co-Ni series, which was confirmed experimentally. The best TE performance in this work was observed for the Cu2NiHf3S8 thiospinel due to its highest power factor and low thermal conductivity. Moreover, all the discovered compounds possess very low lattice thermal conductivity κlat over the investigated temperature range. The κlat for Cu2CoHf3S8 has been found to be as low as 0.8 W m-1 K-1 at 298 K and 0.5 W m-1 K-1 at 673 K, which are significantly lower values compared to the other Cu-based thiospinels reported up to date. The strongly disturbed phonon transport of the investigated alloys mainly comes from the peculiar crystal structure where the large cubic unit cells contain many vacant octahedral voids. As it was evaluated from the Callaway approach and confirmed by the speed of sound measurements, such a crystal structure promotes the increase in lattice anharmonicity, which is the main reason for the low κlat. This work provides a guideline for the engineering of thermal transport in thiospinels and offers the discovered Cu2MHf3S8 (M-Mn, Fe, Co, and Ni) compounds, as new promising functional materials with low lattice thermal conductivity.

8.
ACS Appl Mater Interfaces ; 13(33): 39606-39620, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387484

RESUMEN

Searching for novel low-cost and eco-friendly materials for energy conversion is a good way to provide widespread utilization of thermoelectric technologies. Herein, we report the thermal behavior, phase equilibria data, and thermoelectric properties for the promising argyrodite-based Cu7P(SxSe1-x)6 thermoelectrics. Alloying of Cu7PSe6 with Cu7PS6 provides a continuous solid solution over the whole compositional range, as shown in the proposed phase diagram for the Cu7PS6-Cu7PSe6 system. As a member of liquid-like materials, the investigated Cu7P(SxSe1-x)6 solid solutions possess a dramatically low lattice thermal conductivity, as low as ∼0.2-0.3 W m-1 K-1, over the entire temperature range. Engineering the configurational entropy of the material by introducing more elements stabilizes the thermoelectrically beneficial high-symmetry γ-phase and promotes the multivalley electronic structure of the valence band. As a result, a remarkable improvement of the Seebeck coefficient and a reduction of electrical resistivity were observed for the investigated alloys. The combined effect of the extremely low lattice thermal conductivity and enhanced power factor leads to the significant enhancement of the thermoelectric figure of merit ZT up to ∼0.75 at 673 K for the Cu7P(SxSe1-x)6 (x = 0.5) sample with the highest configurational entropy, which is around twice higher compared with the pure selenide and almost four times higher than sulfide. This work not only demonstrates the large potential of Cu7P(SxSe1-x)6 materials for energy conversion but also promotes sulfide argyrodites as earth-abundant and environmentally friendly materials for energy conversion.

9.
Inorg Chem ; 48(12): 5216-23, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19432467

RESUMEN

Neutron diffraction experiments and Korringa-Kohn-Rostoker with coherent potential approximation electronic band structure calculations as well as electrical resistivity measurements have been performed on polycrystalline Mo(3-x)Ru(x)Sb(7) samples for 0 < or = x < or = 1. Neutron diffraction studies have been undertaken at room temperature and extended down to 4 K to get a better understanding of the crystalline structure modifications as the Ru content increases. Both structural and chemical characterizations have unambiguously revealed a solubility limit of the Ru atoms close to 0.8. Electronic band structure calculations have provided theoretical evidence of a progressive transition from a metalliclike state (x = 0) toward a semiconducting-like character as x = 1 is approached, although the solubility limit of Ru precludes a crossover to a semiconducting behavior. The theoretical prediction has been experimentally confirmed by low-temperature electrical resistivity measurements from 2 up to 350 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA