Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 522(7557): 482-6, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25874673

RESUMEN

Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptores del Factor de Necrosis Tumoral/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Moléculas de Adhesión Celular/metabolismo , División Celular/genética , Polaridad Celular/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Metaloproteinasa 1 de la Matriz/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Invasividad Neoplásica/genética , Neoplasias/enzimología , Neoplasias/genética , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/genética , Proteínas ras/genética , Proteínas ras/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(46): E10907-E10914, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30381459

RESUMEN

The translational potential of cell-based therapies is often limited by complications related to effectively engineering and manufacturing functional cells. While the use of electroporation is widespread, the impact of electroporation on cell state and function has yet to be fully characterized. Here, we use a genome-wide approach to study optimized electroporation treatment and identify striking disruptions in the expression profiles of key functional transcripts of human T cells. These genetic disruptions result in concomitant perturbation of cytokine secretion including a 648-fold increase in IL-2 secretion (P < 0.01) and a 30-fold increase in IFN-γ secretion (P < 0.05). Ultimately, the effects at the transcript and protein level resulted in functional deficiencies in vivo, with electroporated T cells failing to demonstrate sustained antigen-specific effector responses when subjected to immunological challenge. In contrast, cells subjected to a mechanical membrane disruption-based delivery mechanism, cell squeezing, had minimal aberrant transcriptional responses [0% of filtered genes misregulated, false discovery rate (FDR) q < 0.1] relative to electroporation (17% of genes misregulated, FDR q < 0.1) and showed undiminished effector responses, homing capabilities, and therapeutic potential in vivo. In a direct comparison of functionality, T cells edited for PD-1 via electroporation failed to distinguish from untreated controls in a therapeutic tumor model, while T cells edited with similar efficiency via cell squeezing demonstrated the expected tumor-killing advantage. This work demonstrates that the delivery mechanism used to insert biomolecules affects functionality and warrants further study.


Asunto(s)
Ingeniería Celular/métodos , Microfluídica/métodos , Células Dendríticas/inmunología , Electroporación/métodos , Humanos , ARN Mensajero/metabolismo , Linfocitos T/inmunología , Transcriptoma
3.
Sci Rep ; 9(1): 1335, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718768

RESUMEN

CDC25 phosphatases play a key role in cell cycle transitions and are important targets for cancer therapy. Here, we set out to discover novel CDC25 inhibitors. Using a combination of computational methods, we defined a minimal common pharmacophore in established CDC25 inhibitors and performed virtual screening of a proprietary library. Based on the availability of crystal structures for CDC25A and CDC25B, we implemented a molecular docking strategy and carried out hit expansion/optimization. Enzymatic assays revealed that naphthoquinone scaffolds were the most promising CDC25 inhibitors among selected hits. At the molecular level, the compounds acted through a mixed-type mechanism of inhibition of phosphatase activity, involving reversible oxidation of cysteine residues. In 2D cell cultures, the compounds caused arrest of the cell cycle at the G1/S or at the G2/M transition. Mitotic markers analysis and time-lapse microscopy confirmed that CDK1 activity was impaired and that mitotic arrest was followed by death. Finally, the compounds induced differentiation, accompanied by decreased stemness properties, in intestinal crypt stem cell-derived Apc/K-Ras-mutant mouse organoids, and led to tumor regression and reduction of metastatic potential in zebrafish embryo xenografts used as in vivo model.


Asunto(s)
Proteína Quinasa CDC2/genética , Neoplasias/genética , Conformación Proteica , Fosfatasas cdc25/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , División Celular/genética , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Xenoinjertos , Humanos , Ratones , Mitosis/genética , Simulación del Acoplamiento Molecular , Naftoquinonas/farmacología , Neoplasias/patología , Fosfatasas cdc25/antagonistas & inhibidores , Fosfatasas cdc25/química , Fosfatasas cdc25/ultraestructura
4.
Sci Rep ; 6: 34725, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713480

RESUMEN

Tumorigenesis is driven by genetic alterations that perturb the signaling networks regulating proliferation or cell death. In order to block tumor growth, one has to precisely know how these signaling pathways function and interplay. Here, we identified the transcription factor Ets21C as a pivotal regulator of tumor growth and propose a new model of how Ets21C could affect this process. We demonstrate that a depletion of Ets21C strongly suppressed tumor growth while ectopic expression of Ets21C further increased tumor size. We confirm that Ets21C expression is regulated by the JNK pathway and show that Ets21C acts via a positive feed-forward mechanism to induce a specific set of target genes that is critical for tumor growth. These genes are known downstream targets of the JNK pathway and we demonstrate that their expression not only depends on the transcription factor AP-1, but also on Ets21C suggesting a cooperative transcriptional activation mechanism. Taken together we show that Ets21C is a crucial player in regulating the transcriptional program of the JNK pathway and enhances our understanding of the mechanisms that govern neoplastic growth.


Asunto(s)
Carcinogénesis/patología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Sitios de Unión , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular , Proliferación Celular , Proteínas de Drosophila/química , Drosophila melanogaster , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/química , Factor de Transcripción AP-1/genética , Activación Transcripcional , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA