Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(5): 1040-1053.e17, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712872

RESUMEN

Sphingomyelin and cholesterol are essential lipids that are enriched in plasma membranes of animal cells, where they interact to regulate membrane properties and many intracellular signaling processes. Despite intense study, the interaction between these lipids in membranes is not well understood. Here, structural and biochemical analyses of ostreolysin A (OlyA), a protein that binds to membranes only when they contain both sphingomyelin and cholesterol, reveal that sphingomyelin adopts two distinct conformations in membranes when cholesterol is present. One conformation, bound by OlyA, is induced by stoichiometric, exothermic interactions with cholesterol, properties that are consistent with sphingomyelin/cholesterol complexes. In its second conformation, sphingomyelin is free from cholesterol and does not bind OlyA. A point mutation abolishes OlyA's ability to discriminate between these two conformations. In cells, levels of sphingomyelin/cholesterol complexes are held constant over a wide range of plasma membrane cholesterol concentrations, enabling precise regulation of the chemical activity of cholesterol.


Asunto(s)
Membrana Celular/ultraestructura , Esfingomielinas/metabolismo , Esfingomielinas/fisiología , Animales , Línea Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Colesterol/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/ultraestructura , Humanos , Microdominios de Membrana/metabolismo , Conformación Molecular
2.
Cell ; 179(1): 205-218.e21, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31522888

RESUMEN

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Imitación Molecular/inmunología , Inmunidad de la Planta/fisiología , Adenosina Trifosfatasas/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/química , Células HEK293 , Proteínas HSP90 de Choque Térmico/química , Células HeLa , Interacciones Microbiota-Huesped/inmunología , Humanos , Fosforilación , Plásmidos/genética , Unión Proteica , Pliegue de Proteína , Proteínas Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Cell ; 175(3): 809-821.e19, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270044

RESUMEN

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.


Asunto(s)
Adenosina Monofosfato/metabolismo , Dominio Catalítico , Procesamiento Proteico-Postraduccional , Selenoproteínas/metabolismo , Secuencia Conservada , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Selenoproteínas/química
4.
Cell ; 155(2): 423-34, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120140

RESUMEN

VopL is an effector protein from Vibrio parahaemolyticus that nucleates actin filaments. VopL consists of a VopL C-terminal domain (VCD) and an array of three WASP homology 2 (WH2) motifs. Here, we report the crystal structure of the VCD dimer bound to actin. The VCD organizes three actin monomers in a spatial arrangement close to that found in the canonical actin filament. In this arrangement, WH2 motifs can be modeled into the binding site of each actin without steric clashes. The data suggest a mechanism of nucleation wherein VopL creates filament-like structures, organized by the VCD with monomers delivered by the WH2 array, that can template addition of new subunits. Similarities with Arp2/3 complex and formin proteins suggest that organization of monomers into filament-like structures is a general and central feature of actin nucleation.


Asunto(s)
Actinas/química , Proteínas Bacterianas/química , Vibrio parahaemolyticus/química , Citoesqueleto de Actina , Actinas/genética , Actinas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Conejos , Vibrio parahaemolyticus/citología , Vibrio parahaemolyticus/metabolismo
5.
PLoS Pathog ; 20(5): e1012010, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753575

RESUMEN

Arboviruses are a diverse group of insect-transmitted pathogens that pose global public health challenges. Identifying evolutionarily conserved host factors that combat arbovirus replication in disparate eukaryotic hosts is important as they may tip the balance between productive and abortive viral replication, and thus determine virus host range. Here, we exploit naturally abortive arbovirus infections that we identified in lepidopteran cells and use bacterial effector proteins to uncover host factors restricting arbovirus replication. Bacterial effectors are proteins secreted by pathogenic bacteria into eukaryotic hosts cells that can inhibit antimicrobial defenses. Since bacteria and viruses can encounter common host defenses, we hypothesized that some bacterial effectors may inhibit host factors that restrict arbovirus replication in lepidopteran cells. Thus, we used bacterial effectors as molecular tools to identify host factors that restrict four distinct arboviruses in lepidopteran cells. By screening 210 effectors encoded by seven different bacterial pathogens, we identify several effectors that individually rescue the replication of all four arboviruses. We show that these effectors encode diverse enzymatic activities that are required to break arbovirus restriction. We further characterize Shigella flexneri-encoded IpaH4 as an E3 ubiquitin ligase that directly ubiquitinates two evolutionarily conserved proteins, SHOC2 and PSMC1, promoting their degradation in insect and human cells. We show that depletion of either SHOC2 or PSMC1 in insect or human cells promotes arbovirus replication, indicating that these are ancient virus restriction factors conserved across invertebrate and vertebrate hosts. Collectively, our study reveals a novel pathogen-guided approach to identify conserved antimicrobial machinery, new effector functions, and conserved roles for SHOC2 and PSMC1 in virus restriction.


Asunto(s)
Proteínas Bacterianas , Interacciones Huésped-Patógeno , Replicación Viral , Animales , Replicación Viral/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Arbovirus , Shigella flexneri/patogenicidad , Infecciones por Arbovirus/virología , Línea Celular
6.
Cell ; 140(2): 246-56, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141838

RESUMEN

Vav proteins are guanine nucleotide exchange factors (GEFs) for Rho family GTPases. They control processes including T cell activation, phagocytosis, and migration of normal and transformed cells. We report the structure and biophysical and cellular analyses of the five-domain autoinhibitory element of Vav1. The catalytic Dbl homology (DH) domain of Vav1 is controlled by two energetically coupled processes. The DH active site is directly, but weakly, inhibited by a helix from the adjacent Acidic domain. This core interaction is strengthened 10-fold by contacts of the calponin homology (CH) domain with the Acidic, pleckstrin homology, and DH domains. This construction enables efficient, stepwise relief of autoinhibition: initial phosphorylation events disrupt the modulatory CH contacts, facilitating phosphorylation of the inhibitory helix and consequent GEF activation. Our findings illustrate how the opposing requirements of strong suppression of activity and rapid kinetics of activation can be achieved in multidomain systems.


Asunto(s)
Proteínas Proto-Oncogénicas c-vav/química , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Estructura Terciaria de Proteína , Termodinámica
7.
Proc Natl Acad Sci U S A ; 119(51): e2213116119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36512492

RESUMEN

New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.


Asunto(s)
Acinetobacter baumannii , Humanos , Ratones , Animales , Dihidroorotato Deshidrogenasa , Pruebas de Sensibilidad Microbiana , Meropenem , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
8.
J Biol Chem ; 299(4): 104591, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894018

RESUMEN

Bile acids are important for digestion of food and antimicrobial activity. Pathogenic Vibrio parahaemolyticus senses bile acids and induce pathogenesis. The bile acid taurodeoxycholate (TDC) was shown to activate the master regulator, VtrB, of this system, whereas other bile acids such as chenodeoxycholate (CDC) do not. Previously, VtrA-VtrC was discovered to be the co-component signal transduction system that binds bile acids and induces pathogenesis. TDC binds to the periplasmic domain of the VtrA-VtrC complex, activating a DNA-binding domain in VtrA that then activates VtrB. Here, we find that CDC and TDC compete for binding to the VtrA-VtrC periplasmic heterodimer. Our crystal structure of the VtrA-VtrC heterodimer bound to CDC revealed CDC binds in the same hydrophobic pocket as TDC but differently. Using isothermal titration calorimetry, we observed that most mutants in the binding pocket of VtrA-VtrC caused a decrease in bile acid binding affinity. Notably, two mutants in VtrC bound bile acids with a similar affinity as the WT protein but were attenuated for TDC-induced type III secretion system 2 activation. Collectively, these studies provide a molecular explanation for the selective pathogenic signaling by V. parahaemolyticus and reveal insight into a host's susceptibility to disease.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Ácidos y Sales Biliares/metabolismo , Transducción de Señal , Ácido Quenodesoxicólico , Proteínas Bacterianas/metabolismo
9.
Mol Cell ; 62(2): 248-259, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-26971492

RESUMEN

The ring-shaped cohesin complex regulates transcription, DNA repair, and chromosome segregation by dynamically entrapping chromosomes to promote chromosome compaction and sister-chromatid cohesion. The cohesin ring needs to open and close to allow its loading to and release from chromosomes. Cohesin dynamics are controlled by the releasing factors Pds5 and Wapl and the cohesin stabilizer Sororin. Here, we report the crystal structure of human Pds5B bound to a conserved peptide motif found in both Wapl and Sororin. Our structure establishes the basis for how Wapl and Sororin antagonistically influence cohesin dynamics. The structure further reveals that Pds5 can bind inositol hexakisphosphate (IP6). The IP6-binding segment of Pds5B is shaped like the jaw of a plier lever and inhibits the binding of Scc1 to Smc3. We propose that Pds5 stabilizes a transient, open state of cohesin to promote its release from chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Humanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácido Fítico/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/química , Cromosomas Humanos/química , Cromosomas Humanos/genética , Secuencia Conservada , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Transfección , Cohesinas
10.
Proc Natl Acad Sci U S A ; 117(15): 8563-8572, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32220963

RESUMEN

The small GTPase RABL3 is an oncogene of unknown physiological function. Homozygous knockout alleles of mouse Rabl3 were embryonic lethal, but a viable hypomorphic allele (xiamen [xm]) causing in-frame deletion of four amino acids from the interswitch region resulted in profound defects in lymphopoiesis. Impaired lymphoid progenitor development led to deficiencies of B cells, T cells, and natural killer (NK) cells in Rabl3xm/xm mice. T cells and NK cells exhibited impaired cytolytic activity, and mice infected with mouse cytomegalovirus (MCMV) displayed elevated titers in the spleen. Myeloid cells were normal in number and function. Biophysical and crystallographic studies demonstrated that RABL3 formed a homodimer in solution via interactions between the effector binding surfaces on each subunit; monomers adopted a typical small G protein fold. RABL3xm displayed a large compensatory alteration in switch I, which adopted a ß-strand configuration normally provided by the deleted interswitch residues, thereby permitting homodimer formation. Dysregulated effector binding due to conformational changes in the switch I-interswitch-switch II module likely underlies the xm phenotype. One such effector may be GPR89, putatively an ion channel or G protein-coupled receptor (GPCR). RABL3, but not RABL3xm, strongly associated with and stabilized GPR89, and an N-ethyl-N-nitrosourea (ENU)-induced mutation (explorer) in Gpr89 phenocopied Rabl3xm.


Asunto(s)
Linfocitos B/inmunología , Linfopoyesis , Proteínas Mutantes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Linfocitos T/inmunología , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/fisiología , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Cristalografía por Rayos X , Femenino , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/inmunología , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Conformación Proteica , Linfocitos T/metabolismo , Linfocitos T/patología
11.
J Biol Chem ; 296: 100146, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33277357

RESUMEN

The siderophore rhizoferrin (N1,N4-dicitrylputrescine) is produced in fungi and bacteria to scavenge iron. Putrescine-producing bacterium Ralstonia pickettii synthesizes rhizoferrin and encodes a single nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. From biosynthetic logic, we hypothesized that this single enzyme is sufficient for rhizoferrin biosynthesis. We confirmed this by expression of R. pickettii NIS synthetase in Escherichia coli, resulting in rhizoferrin production. This was further confirmed in vitro using the recombinant NIS synthetase, synthesizing rhizoferrin from putrescine and citrate. Heterologous expression of homologous lbtA from Legionella pneumophila, required for rhizoferrin biosynthesis in that species, produced siderophore activity in E. coli. Rhizoferrin is also synthesized by Francisella tularensis and Francisella novicida, but unlike R. pickettii or L. pneumophila, Francisella species lack putrescine biosynthetic pathways because of genomic decay. Francisella encodes a NIS synthetase FslA/FigA and an ornithine decarboxylase homolog FslC/FigC, required for rhizoferrin biosynthesis. Ornithine decarboxylase produces putrescine from ornithine, but we show here in vitro that FigA synthesizes N-citrylornithine, and FigC is an N-citrylornithine decarboxylase that together synthesize rhizoferrin without using putrescine. We co-expressed F. novicida figA and figC in E. coli and produced rhizoferrin. A 2.1 Å X-ray crystal structure of the FigC N-citrylornithine decarboxylase reveals how the larger substrate is accommodated and how active site residues have changed to recognize N-citrylornithine. FigC belongs to a new subfamily of alanine racemase-fold PLP-dependent decarboxylases that are not involved in polyamine biosynthesis. These data reveal a natural product biosynthetic workaround that evolved to bypass a missing precursor and re-establish it in the final structure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Péptido Sintasas/metabolismo , Putrescina/metabolismo , Ralstonia pickettii/enzimología , Sideróforos/metabolismo , Citratos/metabolismo , Francisella/enzimología , Legionella pneumophila/enzimología
12.
J Biol Chem ; 295(18): 6214-6224, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32229585

RESUMEN

The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis.


Asunto(s)
Interacciones Huésped-Patógeno , Legionella pneumophila/enzimología , Ácido Fítico/farmacología , Proteínas Quinasas/metabolismo , Activación Enzimática/efectos de los fármacos , Legionella pneumophila/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas Quinasas/química
13.
Proc Natl Acad Sci U S A ; 114(40): E8518-E8527, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923929

RESUMEN

Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturating conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of l-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Neurotransmisores/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Animales , Cristalografía por Rayos X , Liposomas , Unión Proteica , Dominios Proteicos , Ratas , Transmisión Sináptica , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagminas/química , Sinaptotagminas/genética
14.
Proc Natl Acad Sci U S A ; 113(44): 12444-12449, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791135

RESUMEN

The ring-shaped cohesin complex topologically entraps chromosomes and regulates chromosome segregation, transcription, and DNA repair. The cohesin core consists of the structural maintenance of chromosomes 1 and 3 (Smc1-Smc3) heterodimeric ATPase, the kleisin subunit sister chromatid cohesion 1 (Scc1) that links the two ATPase heads, and the Scc1-bound adaptor protein Scc3. The sister chromatid cohesion 2 and 4 (Scc2-Scc4) complex loads cohesin onto chromosomes. Mutations of cohesin and its regulators, including Scc2, cause human developmental diseases termed cohesinopathy. Here, we report the crystal structure of Chaetomium thermophilum (Ct) Scc2 and examine its interaction with cohesin. Similar to Scc3 and another Scc1-interacting cohesin regulator, precocious dissociation of sisters 5 (Pds5), Scc2 consists mostly of helical repeats that fold into a hook-shaped structure. Scc2 binds to Scc1 through an N-terminal region of Scc1 that overlaps with its Pds5-binding region. Many cohesinopathy mutations target conserved residues in Scc2 and diminish Ct Scc2 binding to Ct Scc1. Pds5 binding to Scc1 weakens the Scc2-Scc1 interaction. Our study defines a functionally important interaction between the kleisin subunit of cohesin and the hook of Scc2. Through competing with Scc2 for Scc1 binding, Pds5 might contribute to the release of Scc2 from loaded cohesin, freeing Scc2 for additional rounds of loading.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Chaetomium/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Fúngicas/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Chaetomium/genética , Cromátides , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Cohesinas
15.
Proc Natl Acad Sci U S A ; 113(25): E3482-91, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27185916

RESUMEN

The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.


Asunto(s)
Proteínas Quinasas , Esporas Bacterianas/genética , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas de la Cápside , Fosforilación
16.
Nature ; 469(7328): 107-11, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21170023

RESUMEN

The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 Å crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 Å crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Biocatálisis , Escherichia coli O157/química , Proteínas de Escherichia coli/metabolismo , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Factores de Ribosilacion-ADP/química , Regulación Alostérica , Animales , Transporte Biológico , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Activación Enzimática , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Aparato de Golgi/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Desplegamiento Proteico , Ratas , Técnicas del Sistema de Dos Híbridos , Quinasas p21 Activadas/química
17.
Proc Natl Acad Sci U S A ; 111(50): 17839-44, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25468971

RESUMEN

Although histidine kinases (HKs) are critical sensors of external stimuli in prokaryotes, the mechanisms by which their sensor domains control enzymatic activity remain unclear. Here, we report the full-length structure of a blue light-activated HK from Erythrobacter litoralis HTCC2594 (EL346) and the results of biochemical and biophysical studies that explain how it is activated by light. Contrary to the standard view that signaling occurs within HK dimers, EL346 functions as a monomer. Its structure reveals that the light-oxygen-voltage (LOV) sensor domain both controls kinase activity and prevents dimerization by binding one side of a dimerization/histidine phosphotransfer-like (DHpL) domain. The DHpL domain also contacts the catalytic/ATP-binding (CA) domain, keeping EL346 in an inhibited conformation in the dark. Upon light stimulation, interdomain interactions weaken to facilitate activation. Our data suggest that the LOV domain controls kinase activity by affecting the stability of the DHpL/CA interface, releasing the CA domain from an inhibited conformation upon photoactivation. We suggest parallels between EL346 and dimeric HKs, with sensor-induced movements in the DHp similarly remodeling the DHp/CA interface as part of activation.


Asunto(s)
Modelos Moleculares , Proteínas Quinasas/química , Transducción de Señal/fisiología , Sphingomonadaceae/enzimología , Cromatografía en Gel , Cromatografía Liquida , Biología Computacional , Cristalización , Dimerización , Escherichia coli , Histidina Quinasa , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Conformación Proteica , Transducción de Señal/genética , Difracción de Rayos X
18.
Biochemistry ; 55(9): 1283-6, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26878348

RESUMEN

Expansion of a GGGGCC/CCCCGG repeat sequence in the first intron of the C9ORF72 gene is a leading cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this combined disorder, called c9FTD/ALS, the expansion is bidirectionally transcribed into sense and antisense repeat RNA associated with disease. To better understand the role of C9ORF72 repeat RNA in molecular disease pathology, we determined crystal structures of a [(CCCCGG)3(CCCC)] model antisense repeat RNA to 1.47 Å resolution. The RNA structure was an A-form-like double helix composed of repeating and regularly spaced tandem C:C mismatch pairs that perturbed helical geometry and surface charge. Solution studies revealed a preference for A-form-like helical conformations as the repeat number increased. Results provide a structural starting point for rationalizing the contribution of repeat RNA to c9FTD/ALS molecular disease mechanisms and for developing molecules to target C9ORF72 repeat RNA as potential therapeutics.


Asunto(s)
Disparidad de Par Base/fisiología , Proteínas/química , Proteínas/genética , ARN sin Sentido/química , ARN sin Sentido/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72 , Expansión de las Repeticiones de ADN/fisiología , Demencia Frontotemporal/genética , Humanos , Estructura Secundaria de Proteína , Difracción de Rayos X
19.
J Biol Chem ; 290(12): 7707-21, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25627682

RESUMEN

The hypoxia-inducible factor complex (HIF-α·aryl hydrocarbon receptor nuclear translocator (ARNT)) requires association with several transcription coactivators for a successful cellular response to hypoxic stress. In addition to the conventional global transcription coactivator CREB-binding protein/p300 (CBP/p300) that binds to the HIF-α transactivation domain, a new group of transcription coactivators called the coiled-coil coactivators (CCCs) interact directly with the second PER-ARNT-SIM (PAS) domain of ARNT (ARNT PAS-B). These less studied transcription coactivators play essential roles in the HIF-dependent hypoxia response, and CCC misregulation is associated with several forms of cancer. To better understand CCC protein recruitment by the heterodimeric HIF transcription factor, we used x-ray crystallography, NMR spectroscopy, and biochemical methods to investigate the structure of the ARNT PAS-B domain in complex with the C-terminal fragment of a coiled-coil coactivator protein, transforming acidic coiled-coil coactivator 3 (TACC3). We found that the HIF-2α PAS-B domain also directly interacts with TACC3, motivating an NMR data-derived model suggesting a means by which TACC3 could form a ternary complex with HIF-2α PAS-B and ARNT PAS-B via ß-sheet/coiled-coil interactions. These findings suggest that TACC3 could be recruited as a bridge to cooperatively mediate between the HIF-2α PAS-B·ARNT PAS-B complex, thereby participating more directly in HIF-dependent gene transcription than previously anticipated.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Transactivadores/fisiología , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Cristalografía por Rayos X , Dimerización , Humanos , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular
20.
Mol Cell ; 32(3): 394-405, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18995837

RESUMEN

In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.


Asunto(s)
Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Sitios de Unión , Cristalización , Humanos , Cinética , Modelos Moleculares , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Secuencias Repetitivas de Ácidos Nucleicos , Huso Acromático/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA