Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 23(1): 279, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39080716

RESUMEN

The neutral result of the PROMINENT trial has led to questions about the future for pemafibrate. This commentary discusses possible reasons for the lack of benefit observed in the trial. There were, however, indicators suggesting therapeutic potential in microvascular ischaemic complications associated with peripheral artery disease, with subsequent analysis showing reduction in the incidence of lower extremity ischaemic ulceration or gangrene. Reassurance about the safety of pemafibrate, together with emerging data from PROMINENT and experimental studies, also suggest benefit with pemafibrate in non-alcoholic fatty liver disease (alternatively referred to as metabolic dysfunction-associated steatotic liver disease) and microangiopathy associated with diabetes, which merit further study.


Asunto(s)
Benzoxazoles , Butiratos , Animales , Humanos , Benzoxazoles/uso terapéutico , Benzoxazoles/efectos adversos , Butiratos/uso terapéutico , Butiratos/efectos adversos , Hipolipemiantes/uso terapéutico , Hipolipemiantes/efectos adversos , Isquemia/tratamiento farmacológico , Isquemia/fisiopatología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad Arterial Periférica/tratamiento farmacológico , Factores de Riesgo , Resultado del Tratamiento
2.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 689-700, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37335334

RESUMEN

PURPOSE: The burden of ocular diseases has been gradually increasing worldwide. Various factors are suggested for the development and progression of ocular diseases, such as ocular inflammation, oxidative stress, and complex metabolic dysregulation. Thus, managing ocular diseases requires the modulation of pathologic signaling pathways through many mechanisms. Nicotinamide mononucleotide (NMN) is a bioactive molecule naturally found in life forms. NMN is a direct precursor of the important molecule nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme required for enormous cellular functions in most life forms. While the recent experimental evidence of NMN treatment in various metabolic diseases has been well-reviewed, NMN treatment in ocular diseases has not been comprehensively summarized yet. In this regard, we aimed to focus on the therapeutic roles of NMN treatment in various ocular diseases with recent advances. METHODS: How we came to our current opinion with a recent summary was described based on our own recent reports as well as a search of the related literature. RESULTS: We found that NMN treatment might be available for the prevention of and protection from various experimental ocular diseases, as NMN treatment modulated ocular inflammation, oxidative stress, and complex metabolic dysregulation in murine models for eye diseases such as ischemic retinopathy, corneal defect, glaucoma, and age-related macular degeneration. CONCLUSION: Our current review suggests and discusses new modes of actions of NMN for the prevention of and protection from various ocular diseases and can urge future research to obtain more solid evidence on a potential future NMN treatment in ocular diseases at the preclinical stages.


Asunto(s)
Glaucoma , Degeneración Macular , Humanos , Animales , Ratones , Mononucleótido de Nicotinamida , Ojo , Inflamación
3.
FASEB J ; 36(9): e22497, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35969144

RESUMEN

Retinal ischemia-reperfusion (I/R) injury is a common cause of visual impairment. To date, no effective treatment is available for retinal I/R injury. In addition, the precise pathological mechanisms still need to be established. Recently, pemafibrate, a peroxisome proliferator-activated receptor α (PPARα) modulator, was shown to be a promising drug for retinal ischemia. However, the role of pemafibrate in preventing retinal I/R injury has not been documented. Here, we investigated how retinal degeneration occurs in a mouse model of retinal I/R injury by elevation of intraocular pressure and examined whether pemafibrate could be beneficial against retinal degeneration. Adult mice were orally administered pemafibrate (0.5 mg/kg/day) for 4 days, followed by retinal I/R injury. The mice were continuously administered pemafibrate once every day until the end of the experiments. Retinal functional changes were measured using electroretinography. Retina, liver, and serum samples were used for western blotting, quantitative PCR, immunohistochemistry, or enzyme linked immunosorbent assay. Retinal degeneration induced by retinal inflammation was prevented by pemafibrate administration. Pemafibrate administration increased the hepatic PPARα target gene expression and serum levels of fibroblast growth factor 21, a neuroprotective molecule in the eye. The expression of hypoxia-response and pro-and anti-apoptotic/inflammatory genes increased in the retina following retinal I/R injury; however, these changes were modulated by pemafibrate administration. In conclusion, pemafibrate is a promising preventive drug for ischemic retinopathies.


Asunto(s)
Daño por Reperfusión , Degeneración Retiniana , Animales , Benzoxazoles , Butiratos , Modelos Animales de Enfermedad , Isquemia , Ratones , PPAR alfa/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982446

RESUMEN

Disorders in the development and regulation of blood vessels are involved in various ocular disorders, such as persistent hyperplastic primary vitreous, familial exudative vitreoretinopathy, and choroidal dystrophy. Thus, the appropriate regulation of vascular development is essential for healthy ocular functions. However, regulation of the developing choroidal circulation system has not been well studied compared with vascular regulation in the vitreous and the retina. The choroid is a vascular-rich and uniquely structured tissue supplying oxygen and nutrients to the retina, and hypoplasia and the degeneration of the choroid are involved in many ocular disorders. Therefore, understanding the developing choroidal circulation system expands our knowledge of ocular development and supports our understanding of ocular disorders. In this review, we examine studies on regulating the developing choroidal circulation system at the cellular and molecular levels and discuss the relevance to human diseases.


Asunto(s)
Enfermedades de la Coroides , Oftalmopatías , Humanos , Retina , Coroides/irrigación sanguínea
5.
Int J Mol Sci ; 23(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35563640

RESUMEN

Ocular ischemic syndrome (OIS) is one of the severe ocular disorders occurring from stenosis or occlusion of the carotid arteries. As the ophthalmic artery is derived from the branch of the carotid artery, stenosis or occlusion of the carotid arteries could induce chronic ocular hypoperfusion, finally leading to the development of OIS. To date, the pathophysiology of OIS is still not clearly unraveled. To better explore the pathophysiology of OIS, several experimental models have been developed in rats and mice. Surgical occlusion or stenosis of common carotid arteries or internal carotid arteries was conducted bilaterally or unilaterally for model development. In this regard, final ischemic outcomes in the eye varied depending on the surgical procedure, even though similar findings on ocular hypoperfusion could be observed. In the current review, we provide an overview of the pathophysiology of OIS from various experimental models, as well as several clinical cases. Moreover, we cover the status of current therapies for OIS along with promising preclinical treatments with recent advances. Our review will enable more comprehensive therapeutic approaches to prevent the development and/or progression of OIS.


Asunto(s)
Estenosis Carotídea , Oftalmopatías , Animales , Estenosis Carotídea/complicaciones , Constricción Patológica , Ojo/irrigación sanguínea , Isquemia/terapia , Ratones , Modelos Teóricos , Arteria Oftálmica/fisiología , Ratas
6.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499037

RESUMEN

Cardiovascular abnormality-mediated retinal ischemia causes severe visual impairment. Retinal ischemia is involved in enormous pathological processes including oxidative stress, reactive gliosis, and retinal functional deficits. Thus, maintaining retinal function by modulating those pathological processes may prevent or protect against vision loss. Over the decades, nicotinamide mononucleotide (NMN), a crucial nicotinamide adenine dinucleotide (NAD+) intermediate, has been nominated as a promising therapeutic target in retinal diseases. Nonetheless, a protective effect of NMN has not been examined in cardiovascular diseases-induced retinal ischemia. In our study, we aimed to investigate its promising effect of NMN in the ischemic retina of a murine model of carotid artery occlusion. After surgical unilateral common carotid artery occlusion (UCCAO) in adult male C57BL/6 mice, NMN (500 mg/kg/day) was intraperitoneally injected to mice every day until the end of experiments. Electroretinography and biomolecular assays were utilized to measure ocular functional and further molecular alterations in the retina. We found that UCCAO-induced retinal dysfunction was suppressed, pathological gliosis was reduced, retinal NAD+ levels were preserved, and the expression of an antioxidant molecule (nuclear factor erythroid-2-related factor 2; Nrf2) was upregulated by consecutive administration of NMN. Our present outcomes first suggest a promising NMN therapy for the suppression of cardiovascular diseases-mediated retinal ischemic dysfunction.


Asunto(s)
Arteriopatías Oclusivas , Enfermedades Cardiovasculares , Ratones , Animales , Masculino , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , NAD/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Gliosis , Isquemia , Arterias Carótidas/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232528

RESUMEN

Retinal ischemia/reperfusion (I/R) injury can cause severe vision impairment. Retinal I/R injury is associated with pathological increases in reactive oxygen species and inflammation, resulting in retinal neuronal cell death. To date, effective therapies have not been developed. Nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, has been shown to exert neuroprotection for retinal diseases. However, it remains unclear whether NMN can prevent retinal I/R injury. Thus, we aimed to determine whether NMN therapy is useful for retinal I/R injury-induced retinal degeneration. One day after NMN intraperitoneal (IP) injection, adult mice were subjected to retinal I/R injury. Then, the mice were injected with NMN once every day for three days. Electroretinography and immunohistochemistry were used to measure retinal functional alterations and retinal inflammation, respectively. The protective effect of NMN administration was further examined using a retinal cell line, 661W, under CoCl2-induced oxidative stress conditions. NMN IP injection significantly suppressed retinal functional damage, as well as inflammation. NMN treatment showed protective effects against oxidative stress-induced cell death. The antioxidant pathway (Nrf2 and Hmox-1) was activated by NMN treatment. In conclusion, NMN could be a promising preventive neuroprotective drug for ischemic retinopathy.


Asunto(s)
Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antioxidantes , Modelos Animales de Enfermedad , Inflamación , Isquemia , Ratones , NAD/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
8.
Diabetologia ; 64(1): 70-82, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33099660

RESUMEN

AIMS/HYPOTHESIS: Proliferative diabetic retinopathy (PDR) with retinal neovascularisation (NV) is a leading cause of vision loss. This study identified a set of metabolites that were altered in the vitreous humour of PDR patients compared with non-diabetic control participants. We corroborated changes in vitreous metabolites identified in prior studies and identified novel dysregulated metabolites that may lead to treatment strategies for PDR. METHODS: We analysed metabolites in vitreous samples from 43 PDR patients and 21 non-diabetic epiretinal membrane control patients from Japan (age 27-80 years) via ultra-high-performance liquid chromatography-mass spectrometry. We then investigated the association of a novel metabolite (creatine) with retinal NV in mouse oxygen-induced retinopathy (OIR). Creatine or vehicle was administered from postnatal day (P)12 to P16 (during induced NV) via oral gavage. P17 retinas were quantified for NV and vaso-obliteration. RESULTS: We identified 158 metabolites in vitreous samples that were altered in PDR patients vs control participants. We corroborated increases in pyruvate, lactate, proline and allantoin in PDR, which were identified in prior studies. We also found changes in metabolites not previously identified, including creatine. In human vitreous humour, creatine levels were decreased in PDR patients compared with epiretinal membrane control participants (false-discovery rate <0.001). We validated that lower creatine levels were associated with vascular proliferation in mouse retina in the OIR model (p = 0.027) using retinal metabolomics. Oral creatine supplementation reduced NV compared with vehicle (P12 to P16) in OIR (p = 0.0024). CONCLUSIONS/INTERPRETATION: These results suggest that metabolites from vitreous humour may reflect changes in metabolism that can be used to find pathways influencing retinopathy. Creatine supplementation could be useful to suppress NV in PDR. Graphical abstract.


Asunto(s)
Retinopatía Diabética/metabolismo , Metabolómica , Cuerpo Vítreo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Aminoácidos/análisis , Animales , Cromatografía Líquida de Alta Presión , Creatina/administración & dosificación , Creatina/análisis , Retinopatía Diabética/fisiopatología , Femenino , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neovascularización Retiniana/metabolismo , Cuerpo Vítreo/química
9.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502311

RESUMEN

Cardiovascular diseases lead to retinal ischemia, one of the leading causes of blindness. Retinal ischemia triggers pathological retinal glial responses and functional deficits. Therefore, maintaining retinal neuronal activities and modulating pathological gliosis may prevent loss of vision. Previously, pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator, was nominated as a promising drug in retinal ischemia. However, a protective role of pemafibrate remains untouched in cardiovascular diseases-mediated retinal ischemia. Therefore, we aimed to unravel systemic and retinal alterations by treating pemafibrate in a new murine model of retinal ischemia caused by cardiovascular diseases. Adult C57BL/6 mice were orally administered pemafibrate (0.5 mg/kg) for 4 days, followed by unilateral common carotid artery occlusion (UCCAO). After UCCAO, pemafibrate was continuously supplied to mice until the end of experiments. Retinal function (a-and b-waves and the oscillatory potentials) was measured using electroretinography on day 5 and 12 after UCCAO. Moreover, the retina, liver, and serum were subjected to qPCR, immunohistochemistry, or ELISA analysis. We found that pemafibrate enhanced liver function, elevated serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the eye, and protected against UCCAO-induced retinal dysfunction, observed with modulation of retinal gliosis and preservation of oscillatory potentials. Our current data suggest a promising pemafibrate therapy for the suppression of retinal dysfunction in cardiovascular diseases.


Asunto(s)
Arteriopatías Oclusivas/complicaciones , Benzoxazoles/farmacología , Butiratos/farmacología , Arteria Carótida Común/fisiopatología , Enfermedades de la Retina/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades de la Retina/etiología , Enfermedades de la Retina/patología
10.
Angiogenesis ; 23(3): 385-394, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32140799

RESUMEN

To examine whether free fatty acid receptor 4 (FFAR4) activation can protect against choroidal neovascularization (CNV), which is a common cause of blindness, and to elucidate the mechanism underlying the inhibition, we used the mouse model of laser-induced CNV to mimic angiogenic aspects of age-related macular degeneration (AMD). Laser-induced CNV was compared between groups treated with an FFAR4 agonist or vehicle, and between FFAR4 wild-type (Ffar4+/+) and knock out (Ffar4-/-) mice on a C57BL/6J/6N background. The ex vivo choroid-sprouting assay, including primary retinal pigment epithelium (RPE) and choroid, without retina was used to investigate whether FFAR4 affects choroidal angiogenesis. Western blotting for pNF-ĸB/NF-ĸB and qRT-PCR for Il-6, Il-1ß, Tnf-α, Vegf, and Nf-ĸb were used to examine the influence of FFAR4 on inflammation, known to influence CNV. RPE isolated from Ffar4+/+ and Ffar4-/- mice were used to assess RPE contribution to inflammation. The FFAR4 agonist suppressed laser-induced CNV in C57BL/6J mice, and CNV increased in Ffar4-/- compared to Ffar4+/+ mice. We showed that the FFAR4 agonist acted through the FFAR4 receptor. The FFAR4 agonist suppressed mRNA expression of inflammation markers (Il-6, Il-1ß) via the NF-ĸB pathway in the retina, choroid, RPE complex. The FFAR4 agonist suppressed neovascularization in the choroid-sprouting ex vivo assay and FFAR4 deficiency exacerbated sprouting. Inflammation markers were increased in primary RPE cells of Ffar4-/- mice compared with Ffar4+/+ RPE. In this mouse model, the FFAR4 agonist suppressed CNV, suggesting FFAR4 to be a new molecular target to reduce pathological angiogenesis in CNV.


Asunto(s)
Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/prevención & control , Receptores Acoplados a Proteínas G/metabolismo , Animales , Neovascularización Coroidal/genética , Citocinas/genética , Citocinas/metabolismo , Masculino , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/genética
11.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872333

RESUMEN

Diabetic retinopathy (DR) is one of the leading causes of blindness globally. Retinal neuronal abnormalities occur in the early stage in DR. Therefore, maintaining retinal neuronal activity in DR may prevent vision loss. Previously, pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, was suggested as a promising drug in hypertriglyceridemia. However, the role of pemafibrate remains obscure in DR. Therefore, we aimed to unravel systemic and retinal changes by pemafibrate in diabetes. Adult mice were intraperitoneally injected with streptozotocin (STZ) to induce diabetes. After STZ injection, diet supplemented with pemafibrate was given to STZ-induced diabetic mice for 12 weeks. During the experiment period, body weight and blood glucose levels were examined. Electroretinography was performed to check the retinal neural function. After sacrifice, the retina, liver, and blood samples were subjected to molecular analyses. We found pemafibrate mildly improved blood glucose level as well as lipid metabolism, boosted liver function, increased serum fibroblast growth factor21 level, restored retinal functional deficits, and increased retinal synaptophysin protein expression in STZ-induced diabetic mice. Our present data suggest a promising pemafibrate therapy for the prevention of early DR by improving systemic metabolism and protecting retinal function.


Asunto(s)
Benzoxazoles/administración & dosificación , Butiratos/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Retina/fisiopatología , Animales , Benzoxazoles/farmacología , Glucemia , Peso Corporal/efectos de los fármacos , Butiratos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Retinopatía Diabética/fisiopatología , Modelos Animales de Enfermedad , Electrorretinografía , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos , Pruebas de Función Hepática , Masculino , Ratones , Estreptozocina , Sinaptofisina/metabolismo , Resultado del Tratamiento
12.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054022

RESUMEN

The aim of the current study was to investigate the impact of long-acting fibroblast growth factor 21 (FGF21) on retinal vascular leakage utilizing machine learning and to clarify the mechanism underlying the protection. To assess the effect on retinal vascular leakage, C57BL/6J mice were pre-treated with long-acting FGF21 analog or vehicle (Phosphate Buffered Saline; PBS) intraperitoneally (i.p.) before induction of retinal vascular leakage with intravitreal injection of mouse (m) vascular endothelial growth factor 164 (VEGF164) or PBS control. Five hours after mVEGF164 injection, we retro-orbitally injected Fluorescein isothiocyanate (FITC) -dextran and quantified fluorescence intensity as a readout of vascular leakage, using the Image Analysis Module with a machine learning algorithm. In FGF21- or vehicle-treated primary human retinal microvascular endothelial cells (HRMECs), cell permeability was induced with human (h) VEGF165 and evaluated using FITC-dextran and trans-endothelial electrical resistance (TEER). Western blots for tight junction markers were performed. Retinal vascular leakage in vivo was reduced in the FGF21 versus vehicle- treated mice. In HRMECs in vitro, FGF21 versus vehicle prevented hVEGF-induced increase in cell permeability, identified with FITC-dextran. FGF21 significantly preserved TEER compared to hVEGF. Taken together, FGF21 regulates permeability through tight junctions; in particular, FGF21 increases Claudin-1 protein levels in hVEGF-induced HRMECs. Long-acting FGF21 may help reduce retinal vascular leakage in retinal disorders and machine learning assessment can help to standardize vascular leakage quantification.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Retina/efectos de los fármacos , Vasos Retinianos/efectos de los fármacos , Animales , Barrera Hematorretinal/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Células Cultivadas , Femenino , Factores de Crecimiento de Fibroblastos/administración & dosificación , Humanos , Aprendizaje Automático , Masculino , Ratones Endogámicos C57BL , Retina/metabolismo , Retina/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
13.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098361

RESUMEN

The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.


Asunto(s)
Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Neovascularización Retiniana/metabolismo , Vasos Retinianos/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de la Retina/fisiopatología , Neovascularización Retiniana/fisiopatología , Vasos Retinianos/fisiología
14.
Int J Mol Sci ; 20(23)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771164

RESUMEN

Large-scale clinical trials, such as the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) studies, have shown that the administration of fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, suppresses the progression of diabetic retinopathy. In this paper, we reveal a therapeutic effect of a selective PPARα modulator (SPPARMα), pemafibrate, against pathological angiogenesis in murine models of retinopathy. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice by exposure to 85% oxygen from postnatal day eight (P8) for 72 h. Vehicle, pemafibrate or fenofibrate was administrated by oral gavage from P12 to P16 daily. Administration of pemafibrate, but not fenofibrate, significantly reduced pathological angiogenesis in OIR. After oral pemafibrate administration, expression levels of downstream PPARα targets such as acyl-CoA oxidase 1 (Acox1), fatty acid binding protein 4 (Fabp4), and fibroblast growth factor 21 (Fgf21) were significantly increased in the liver but not in the retina. A significant increase in plasma FGF21 and reduced retinal hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (Vegfa) were also observed after this treatment. In an in vitro HIF-luciferase assay, a long-acting FGF21 analogue, but not pemafibrate, suppressed HIF activity. These data indicate that SPPARMα pemafibrate administration may prevent retinal pathological neovascularization by upregulating FGF21 in the liver.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Neovascularización Retiniana/metabolismo , Animales , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Optom Vis Sci ; 93(1): 70-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26583795

RESUMEN

PURPOSE: We evaluated whether a functional visual acuity (FVA) system can detect subtle changes in central visual acuity that reflect pathological findings associated with age-related macular degeneration (AMD). METHODS: Twenty-eight patients with unilateral AMD and logMAR monocular best corrected VA better than 0 in both eyes, as measured by conventional chart examination, were analyzed between November 2012 and April 2013. After measuring conventional VA, FVA, and contrast VA with best correction, routine eye examinations including spectral domain-optical coherence tomography were performed. Standard Schirmer test was performed, and corneal and lens densities were measured. RESULTS: The FVA score (p < 0.001) and visual maintenance ratio (p < 0.001) measured by the FVA system, contrast VA (p < 0. 01), and conventional VA (p < 0.01) were significantly worse in the AMD-affected eyes than in the fellow eyes. No significant differences were observed in the anterior segment conditions. Forward stepwise regression analysis demonstrated that the length of interdigitation zone disruption, as visualized by optical coherence tomography imaging, correlated with the FVA score (p < 0.01) but not with any other parameters investigated. CONCLUSIONS: The FVA system detects subtle changes in best corrected VA in AMD-affected eyes and reflects interdigitation zone disruption, an anatomical change in the retina recorded by optical coherence tomography. Further studies are required to understand the value of the FVA system in detecting subtle changes in AMD.


Asunto(s)
Degeneración Macular/fisiopatología , Agudeza Visual/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Angiografía con Fluoresceína , Humanos , Degeneración Macular/diagnóstico , Masculino , Persona de Mediana Edad , Retina/fisiopatología , Tomografía de Coherencia Óptica/métodos
16.
Retina ; 35(4): 820-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25473786

RESUMEN

PURPOSE: To analyze the association between macular pigment optical density (MPOD), which reflects lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) in the macula, and background characteristics. METHODS: Fifty-five healthy adult volunteers were analyzed. Macular pigment optical density was measured using a heterochromatic flicker photometry technique, and serum concentrations of carotenoids and lipoproteins were by high-performance liquid chromatography and enzyme-linked immunosorbent assay, respectively. Dietary intake of nutrient was determined by a validated self-administered questionnaire on ingestion frequency. RESULTS: Macular pigment optical density was positively correlated with serum concentrations of L and Z and dietary L intake and inversely correlated with serum oxidized low-density lipoprotein (LDL). Although MPOD decreased with age (95% confidence interval, -0.011 to -0.002; correlation coefficient, -0.269; P = 0.007), serum L/Z and dietary L intake did not. In contrast, serum oxidized LDL was positively correlated with age (95% confidence interval, 0.69-2.34; correlation coefficient, 0.333; P = 0.0004). After adjusting for age, sex, and oxidized LDL, serum L was positively correlated with MPOD (95% confidence interval, 0.88-1.69; P = 0.000001). After adjusting for age, sex, and serum L, serum oxidized LDL was inversely correlated with MPOD (95% confidence interval, -0.002 to -0.0004; P = 0.006). CONCLUSION: Macular pigment optical density was inversely correlated with serum oxidized LDL. Further study to know the impact of oxidized LDL on MPOD may be warranted.


Asunto(s)
Lipoproteínas LDL/sangre , Luteína/análisis , Mácula Lútea/química , Pigmento Macular/análisis , Zeaxantinas/análisis , Adulto , Cromatografía Líquida de Alta Presión , Densitometría , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Fotometría/métodos , Encuestas y Cuestionarios , Adulto Joven
17.
Histol Histopathol ; : 18756, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38738342

RESUMEN

Retinal ischemia is a fundamental pathologic condition associated with retinal vascular occlusion, glaucoma, diabetic retinopathy, age-related macular degeneration, and other eye diseases. Extensive inflammation, redox imbalance, apoptosis, and abnormal vascular formation in retinal ischemia could lead to visual impairments. Developing or finding effective treatments is urgently needed to protect the eye against retinal ischemia and related damage. To address the demand, we have searched for promising therapeutic molecular targets in the eye (e.g., hypoxia-inducible factor [HIF], peroxisome proliferator-activated receptor-alpha [PPARα], and nicotinamide adenine dinucleotide [NAD+]), and found that modulations of each molecular target might protect the eye against retinal ischemic damage in terms of complex pathologic mechanisms. In the current article, we review and update the therapeutic evidence of modulation of HIF, PPARα, or NAD+ and discuss future directions for developing promising drugs based on these molecular targets. This summary urges research to obtain more solid evidence of each molecular target in retinal ischemic diseases.

18.
Sci Rep ; 14(1): 17600, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080368

RESUMEN

High myopia can lead to pathologic myopia and visual impairment, whereas its causes are unclear. We retrospectively researched high myopia cases from patient records to investigate the association between axial elongation and myopic maculopathy. Sixty-four eyes were examined in patients who visited the department between July 2017 and June 2018, had an axial length of 26 mm or more, underwent fundus photography, and had their axial length measured twice or more. The average axial length was 28.29 ± 1.69 mm (mean ± standard deviation). The average age was 58.3 ± 14.4 years old. Myopic maculopathy was categorized as mild (grades 0 and 1) and severe (grades 2, 3, and 4). The severe group had longer axial lengths than the mild group (P < 0.05). Moreover, the severe group exhibited thinner choroidal thickness than the mild group (P < 0.05). When subjects were grouped by axial elongation over median value within a year, the elongation group showed thinner central choroidal thickness than the non-elongation group (142.1 ± 91.9 vs. 82.9 ± 69.8, P < 0.05). In conclusion, in patients with high myopia, the severity of maculopathy correlated with choroidal thickness and axial length. Thinner choroidal thickness was associated with axial elongation based on the baseline axial length.


Asunto(s)
Longitud Axial del Ojo , Coroides , Miopía , Humanos , Femenino , Masculino , Persona de Mediana Edad , Coroides/patología , Coroides/diagnóstico por imagen , Anciano , Estudios Retrospectivos , Longitud Axial del Ojo/patología , Miopía/patología , Miopía/complicaciones , Adulto , Índice de Severidad de la Enfermedad , Tomografía de Coherencia Óptica , Miopía Degenerativa/patología , Agudeza Visual , Enfermedades de la Retina/patología , Enfermedades de la Retina/etiología
19.
Res Sq ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38978601

RESUMEN

Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.

20.
Histol Histopathol ; 38(4): 391-401, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36305579

RESUMEN

Ocular ischemia is one of the leading causes of blindness. It is related to various ocular diseases and disorders, including age-related macular degeneration, diabetic retinopathy, glaucoma, and corneal injury. Ocular ischemia occurs due to an abnormal supply of oxygen and nutrients to the eye, resulting in ocular metabolic dysfunction. These changes can be linked with pathologic conditions in the eye, such as inflammation, neovascularization, and cell death, ultimately leading to vision loss. The current treatment care for ocular ischemia is limited. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor protein functioning in regulating lipid metabolism, fatty acid oxidation, and glucose homeostasis. Recently, PPARα activation has been suggested as a useful therapeutic target in treating ocular ischemia. However, its applications have not been well summarized. In this review, we cover an overview of the therapeutic roles of PPARα activation in various ocular ischemic conditions with recent experimental evidence and further provide clinical implications of its therapeutic applications. Our review will enable more approaches to comprehensively understand the therapeutic roles of PPARα activation for preventing ocular ischemic diseases.


Asunto(s)
Retinopatía Diabética , Degeneración Macular , Humanos , PPAR alfa/metabolismo , Neovascularización Patológica , Isquemia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA