Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(4): e22, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34850128

RESUMEN

MicroRNAs (miRNAs or miRs) are single-stranded, ∼22-nucleotide noncoding RNAs that regulate many cellular processes. While numerous miRNA quantification technologies are available, a recent analysis of 12 commercial platforms revealed high variations in reproducibility, sensitivity, accuracy, specificity and concordance within and/or between platforms. Here, we developed a universal hairpin primer (UHP) system that negates the use of miRNA-specific hairpin primers (MsHPs) for quantitative reverse transcription PCR (RT-qPCR)-based miRNA quantification. Specifically, we analyzed four UHPs that share the same hairpin structure but are anchored with two, three, four and six degenerate nucleotides at 3'-ends (namely UHP2, UHP3, UHP4 and UHP6), and found that the four UHPs yielded robust RT products and quantified miRNAs with high efficiency. UHP-based RT-qPCR miRNA quantification was not affected by long transcripts. By analyzing 14 miRNAs, we demonstrated that UHP4 closely mimicked MsHPs in miRNA quantification. Fine-tuning experiments identified an optimized UHP (OUHP) mix with a molar composition of UHP2:UHP4:UHP6 = 8:1:1, which closely recapitulated MsHPs in miRNA quantification. Using synthetic LET7 isomiRs, we demonstrated that the OUHP-based qPCR system exhibited high specificity and sensitivity. Collectively, our results demonstrate that the OUHP system can serve as a reliable and cost-effective surrogate of MsHPs for RT-qPCR-based miRNA quantification for basic research and precision medicine.


Asunto(s)
MicroARNs , Análisis Costo-Beneficio , Cartilla de ADN/genética , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
J Biol Chem ; 298(10): 102479, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096200

RESUMEN

The WNT-ß-catenin signaling pathway has a major role in regulating cell proliferation and differentiation. Aberrant activation of the pathway contributes to various human cancer types. Because casein kinase CK1α-initiated phosphorylation of ß-catenin is a key first step to restrain WNT signaling, effective restoration of CK1α activity represents an innovative strategy to combat WNT-driven cancer. A recent study in JBC reveals the anthelmintic pyrvinium directly binds to CK1α as an activator and also stabilizes CK1α protein, doubling against WNT-driven cancer activity.


Asunto(s)
Neoplasias , Compuestos de Pirvinio , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Compuestos de Pirvinio/farmacología , Vía de Señalización Wnt , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Appl Environ Microbiol ; 89(9): e0080723, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37671870

RESUMEN

Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.


Asunto(s)
Bacterias , Humedales , Oxidación-Reducción , Nitrificación , Amoníaco , China , Archaea , Filogenia
4.
Glob Chang Biol ; 29(1): 276-288, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181699

RESUMEN

Accelerated sea-level rise is expected to cause the salinization of freshwater wetlands, but the responses to salinity of the availability of soil phosphorus (P) and of microbial genes involved in the cycling of P remain unexplored. We conducted a field experiment to investigate the effects of salinity on P cycling by soil microbial communities and their regulatory roles on P availability in coastal freshwater and brackish wetlands. Salinity was positively correlated with P availability, with higher concentrations of labile P but lower concentrations of moderately labile P in the brackish wetland. The diversity and richness of microbial communities involved in P cycling were higher in the brackish wetland than the freshwater wetland. Salinity substantially altered the composition of the P-cycling microbial community, in which those of the brackish wetland were separated from those of the freshwater wetland. Metagenomic sequence analysis indicated that functional genes involved in the solubilization of inorganic P and the subsequent transport and regulation of P were more abundant in coastal soils. The relative abundances of most of the target genes differed between the wetlands, with higher abundances of P-solubilization (gcd and ppa) and -mineralization (phoD, phy, and ugpQ) genes and lower abundances of P-transport genes (pstB, ugpA, ugpB, ugpE, and pit) in the brackish wetland. A significant positive correlation between the concentration of labile P and the abundances of the target genes suggested that salinity may, at least in part, improve P availability by regulating the P-cycling microbial community. Our results suggest that the P-cycling microbial community abundance and P availability respond positively to moderate increases in salinity by promoting the microbial solubilization and mineralization of soil P. Changes in microbial communities and microbially mediated P cycling may represent microbial strategies to adapt to moderate salinity levels, which in turn control soil function and nutrient balance.


Asunto(s)
Microbiota , Humedales , Suelo , Salinidad , Agua Dulce
5.
Environ Res ; 227: 115829, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37011802

RESUMEN

Wetland sediment is an important nitrogen pool and a source of the greenhouse gas nitrous oxide (N2O). Modification of coastal wetland landscape due to plant invasion and aquaculture activities may drastically change this N pool and the related dynamics of N2O. This study measured the sediment properties, N2O production and relevant functional gene abundances in 21 coastal wetlands across five provinces along the tropical-subtropical gradient in China, which all had experienced the same sequence of habitat transformation from native mudflats (MFs) to invasive Spartina alterniflora marshes (SAs) and subsequently to aquaculture ponds (APs). Our results showed that change from MFs to SAs increased the availability of NH4+-N and NO3--N and the abundance of functional genes related to N2O production (amoA, nirK, nosZ Ⅰ, and nosZ Ⅱ), whereas conversion of SAs to APs resulted in the opposite changes. Invasion of MFs by S. alterniflora increased N2O production potential by 127.9%, whereas converting SAs to APs decreased it by 30.4%. Based on structural equation modelling, nitrogen substrate availability and abundance of ammonia oxidizers were the key factors driving the change in sediment N2O production potential in these wetlands. This study revealed the main effect patterns of habitat modification on sediment biogeochemistry and N2O production across a broad geographical and climate gradient. These findings will help large-scale mapping and assessing landscape change effects on sediment properties and greenhouse gas emissions along the coast.


Asunto(s)
Gases de Efecto Invernadero , Nitrógeno , Nitrógeno/análisis , Óxido Nitroso , Amoníaco , Ecosistema , Humedales , Suelo/química
6.
J Environ Manage ; 338: 117813, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36996562

RESUMEN

The extensive conversion of carbon-rich coastal wetland to aquaculture ponds in the Asian Pacific region has caused significant changes to the sediment properties and carbon cycling. Using field sampling and incubation experiments, the sediment anaerobic CO2 production and CO2 emission flux were compared between a brackish marsh and the nearby constructed aquaculture ponds in the Min River Estuary in southeastern China over a three-year period. Marsh sediment had a higher total carbon and lower C:N ratio than aquaculture pond sediment, suggesting the importance of marsh vegetation in supplying labile organic carbon to the sediment. Conversion to aquaculture ponds significantly decreased sediment anaerobic CO2 production rates by 69.2% compared to the brackish marsh, but increased CO2 emission, turning the CO2 sink (-490.8 ± 42.0 mg m-2 h-1 in brackish marsh) into a source (6.2 ± 3.9 mg m-2 h-1 in aquaculture pond). Clipping the marsh vegetation resulted in the highest CO2 emission flux (382.6 ± 46.7 mg m-2 h-1), highlighting the critical role of marsh vegetation in capturing and sequestering carbon. Sediment anaerobic CO2 production and CO2 uptake (in brackish marsh) and emission (in aquaculture ponds) were highest in the summer, followed by autumn, spring and winter. Redundancy analysis and structural equation modeling showed that the changes of sediment temperature, salinity and total carbon content accounted for more than 50% of the variance in CO2 production and emission. Overall, the results indicate that vegetation clearing was the main cause of change in CO2 production and emission in the land conversion, and marsh replantation should be a primary strategy to mitigate the climate impact of the aquaculture sector.


Asunto(s)
Estuarios , Humedales , Monitoreo del Ambiente , Estanques , Dióxido de Carbono/análisis , Anaerobiosis , Acuicultura/métodos , China , Carbono/análisis
7.
J Am Chem Soc ; 144(14): 6604-6612, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35362968

RESUMEN

Ion migration, hole trapping, and electron-hole recombination are common processes in metal halide perovskites. We demonstrate using ab initio non-adiabatic molecular dynamics and time-domain density functional theory that they are intricately related and strongly influence each other. The hole injection accelerates ion migration by decreasing the diffusion barrier and shortening the migration length. The injected hole also promotes the nonradiative charge recombination by strengthening electron-phonon interactions in the low-frequency region and prolonging the quantum coherence time. The synergy stems from the soft perovskite lattice and response of the valence band maximum to the Pb-I lattice distortion induced by the hole. This work provides important insights into the influence of ion mobility and hole injection on the performance of perovskite solar cells and suggests that high concentration of holes should be avoided.

8.
Eur J Immunol ; 51(10): 2513-2521, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34323289

RESUMEN

Recent studies have indicated the antitumor activity and reduced allogeneic response of universal chimeric antigen receptor-modified T (UCAR T) cells lacking endogenous T cell receptors and beta-2 microglobulin (B2M) generated using gene-editing technologies. However, these cells are vulnerable to lysis by allogeneic natural killer (NK) cells due to their lack of human leukocyte antigen (HLA) class I molecule expression. Here, constitutive expression of mutant B2M-HLA-E (mBE) and B2M-HLA-G (mBG) fusion proteins in anti-CD19 UCAR T (UCAR T-19) cells was conducted to protect against allogeneic NK cell-mediated lysis. The ability of cells expressing mBE or mBG to resist NK cell-mediated lysis was observed in gene-edited Jurkat CAR19 cells. UCAR T-19 cells constitutively expressing the mBE and mBG fusion proteins were manufactured and showed effective and specific anti-tumor activity. Constitutive expression of the mBE and mBG fusion proteins in UCAR T-19 cells prevented allogeneic NK cell-mediated lysis. In addition, these cells were not recognizable by allogeneic T cells. Additional experiments, including those in animal models and clinical trials, are required to evaluate the safety and efficacy of UCAR T-19 cells that constitutively express mBE and mBG.


Asunto(s)
Citotoxicidad Inmunológica/genética , Antígenos HLA-G/genética , Antígenos de Histocompatibilidad Clase I/genética , Mutación , Receptores Quiméricos de Antígenos/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microglobulina beta-2/genética , Antígenos CD19/inmunología , Técnicas de Inactivación de Genes , Antígenos HLA-G/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunofenotipificación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Microglobulina beta-2/inmunología , Antígenos HLA-E
9.
Blood ; 136(14): 1632-1644, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556247

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19 have achieved breakthroughs in the treatment of hematological malignancies, such as relapsed/refractory non-Hodgkin lymphoma (r/rNHL); however, high rates of treatment failure and recurrence after CAR T-cell therapy are considerable obstacles to overcome. In this study, we designed a series of tandem CARs (TanCARs) and found that TanCAR7 T cells showed dual antigen targeting of CD19 and CD20, as well as formed superior and stable immunological synapse (IS) structures, which may be related to their robust antitumor activity. In an open-label single-arm phase 1/2a trial (NCT03097770), we enrolled 33 patients with r/rNHL; 28 patients received an infusion after conditioning chemotherapy. The primary objective was to evaluate the safety and tolerability of TanCAR7 T cells. Efficacy, progression-free survival, and overall survival were evaluated as secondary objectives. Cytokine release syndrome occurred in 14 patients (50%): 36% had grade 1 or 2 and 14% had grade 3. No cases of CAR T-cell-related encephalopathy syndrome (CRES) of grade 3 or higher were confirmed in any patient. One patient died from a treatment-associated severe pulmonary infection. The overall response rate was 79% (95% confidence interval [CI], 60-92%), and the complete response rate was 71%. The progression-free survival rate at 12 months was 64% (95% CI, 43-79%). In this study, TanCAR7 T cells elicited a potent and durable antitumor response, but not grade 3 or higher CRES, in patients with r/rNHL.


Asunto(s)
Antígenos CD19/inmunología , Antígenos CD20/inmunología , Inmunoterapia Adoptiva , Linfoma de Células B/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Animales , Técnicas de Cultivo de Célula , Degranulación de la Célula/inmunología , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/diagnóstico , Linfoma de Células B/etiología , Linfoma de Células B/mortalidad , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Recurrencia , Retratamiento , Linfocitos T/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Proc Natl Acad Sci U S A ; 116(44): 22347-22352, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611410

RESUMEN

Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.


Asunto(s)
Vaina de Mielina/ultraestructura , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Vaina de Mielina/metabolismo , Traumatismos de los Nervios Periféricos/patología , Ratas
11.
J Cell Mol Med ; 25(5): 2666-2678, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605035

RESUMEN

Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/ß-catenin signalling in BMP9-induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down ß-catenin expression. In vivo implantation assay revealed that while BMP9-stimulated iTGMCs induced robust formation of ectopic bone, knocking down ß-catenin expression in iTGMCs remarkably diminished BMP9-initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio-factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento/genética , Células Madre Mesenquimatosas/metabolismo , Odontogénesis/genética , Osteogénesis/genética , Germen Dentario/citología , Vía de Señalización Wnt , Animales , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Factor 2 de Diferenciación de Crecimiento/metabolismo , Xenoinjertos , Humanos , Células Madre Mesenquimatosas/citología , Ratones
12.
Small ; 17(22): e2005357, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33615728

RESUMEN

Despite numerous inherent merits of metal-organic frameworks (MOFs), structural fragility has imposed great restrictions on their wider involvement in many applications, such as in catalysis. Herein, a strategy for enhancing stability and enabling functionality in a labile Zr(IV)-MOF has been proposed by in situ porphyrin substitution. A size- and geometry-matched robust linear porphyrin ligand 4,4'-(porphyrin-5,15-diyl)dibenzolate (DCPP2- ) is selected to replace the 4,4'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)dibenzoate (NDIDB2- ) ligand in the synthesis of BUT-109(Zr), affording BUT-110 with varied porphyrin contents. Compared to BUT-109(Zr), the chemical stability of BUT-110 series is greatly improved. Metalloporphyrin incorporation endows BUT-110 MOFs with high catalytic activity in the photoreduction of CO2 , in the absence of photosensitizers. By tuning the metal species and porphyrin contents in BUT-110, the resulting BUT-110-50%-Co is demonstrated to be a good photocatalyst for selective CO2 -to-CO reduction, via balancing the chemical stability, photocatalytic efficiency, and synthetic cost. This work highlights the advantages of in situ ligand substitution for MOF modification, by which uniform distribution and high content of the incoming ligand are accessible in the resulting MOFs. More importantly, it provides a promising approach to convert unstable MOFs, which mainly constitute the vast MOF database but have always been neglected, into robust functional materials.

13.
J Environ Sci (China) ; 109: 206-218, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607669

RESUMEN

Carbon dioxide (CO2) emissions from aquatic ecosystems are important components of the global carbon cycle, yet the CO2 emissions from coastal reservoirs, especially in developing countries where urbanization and rapid land use change occur, are still poorly understood. In this study, the spatiotemporal variations in CO2 concentrations and fluxes were investigated in Wenwusha Reservoir located in the southeast coast of China. Overall, the mean CO2 concentration and flux across the whole reservoir were 41.85 ± 2.03 µmol/L and 2.87 ± 0.29 mmol/m2/h, respectively, and the reservoir was a consistent net CO2 source over the entire year. The land use types and urbanization levels in the reservoir catchment significantly affected the input of exogenous carbon to water. The mean CO2 flux was much higher from waters adjacent to the urban land (5.05 ± 0.87 mmol/m2/hr) than other land use types. Sites with larger input of exogenous substance via sewage discharge and upstream runoff were often the hotspots of CO2 emission in the reservoir. Our results suggested that urbanization process, agricultural activities, and large input of exogenous carbon could result in large spatial heterogeneity of CO2 emissions and alter the CO2 biogeochemical cycling in coastal reservoirs. Further studies should characterize the diurnal variations, microbial mechanisms, and impact of meteorological conditions on reservoir CO2 emissions to expand our understanding of the carbon cycle in aquatic ecosystems.


Asunto(s)
Dióxido de Carbono , Urbanización , Dióxido de Carbono/análisis , China , Ecosistema , Metano/análisis
14.
J Cell Mol Med ; 24(2): 1399-1412, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31809000

RESUMEN

Liver plays an essential role in regulating lipid metabolism, and chronically disturbed hepatic metabolism may cause obesity and metabolic syndrome, which may lead to non-alcoholic fatty liver disease (NAFLD). Increasing evidence indicates long non-coding RNAs (lncRNAs) play an important role in energy metabolism. Here, we investigated the role of lncRNA H19 in hepatic lipid metabolism and its potential association with NAFLD. We found that H19 was up-regulated in oleic acid-induced steatosis and during the development of high-fat diet (HFD)-induced NAFLD. Exogenous overexpression of H19 in hepatocytes induced lipid accumulation and up-regulated the expression of numerous genes involved in lipid synthesis, storage and breakdown, while silencing endogenous H19 led to a decreased lipid accumulation in hepatocytes. Mechanistically, H19 was shown to promote hepatic steatosis by up-regulating lipogenic transcription factor MLXIPL. Silencing Mlxipl diminished H19-induced lipid accumulation in hepatocytes. Furthermore, H19-induced lipid accumulation was effectively inhibited by PI3K/mTOR inhibitor PF-04691502. Accordingly, H19 overexpression in hepatocytes up-regulated most components of the mTORC1 signalling axis, which were inhibited by silencing endogenous H19. In vivo hepatocyte implantation studies further confirm that H19 promoted hepatic steatosis by up-regulating both mTORC1 signalling axis and MLXIPL transcriptional network. Collectively, these findings strongly suggest that H19 may play an important role in regulating hepatic lipid metabolism and may serve as a potential therapeutic target for NAFLD.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Modelos Animales de Enfermedad , Silenciador del Gen , Células HEK293 , Humanos , Metabolismo de los Lípidos/genética , Masculino , Ratones Endogámicos C57BL , Ácido Oléico , ARN Largo no Codificante/genética , Triglicéridos/metabolismo , Regulación hacia Arriba/genética
15.
J Am Chem Soc ; 142(6): 3060-3068, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31965789

RESUMEN

Charge carrier recombination plays a vital role in the CH3NH3PbI3 perovskite solar cell. By investigating a possible synergy between ion migration and charge carrier recombination, we demonstrate that the nonradiative recombination accelerates by an order of magnitude during iodide migration. The migration induces lattice distortion that brings electrons and holes close to each other and increases their electrostatic interactions. The wave function localization in the same spatial region, and the enhanced lattice and iodide movements increase the nonadiabatic coupling. At the same time, quantum coherence lasts longer, because electron and hole energy levels become correlated. All these factors greatly increase the recombination rate. Moreover, the energy level of the iodide vacancy created during the migration moves from inside the conduction band in the equilibrated structure into the band gap, acting as a typical efficient nonradiative charge recombination center. Our work shows that the different dynamic processes are strongly correlated in halide perovskites and demonstrates that defects, considered to be benign, can become very detrimental under non-equilibrium conditions. The reported results strongly suggest that ion migration should be avoided in halide perovskites, both for its own reasons, such as the large current-voltage hysteresis, and because it greatly accelerates charge carrier losses.

17.
Cytotherapy ; 22(10): 573-580, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32527643

RESUMEN

The current clinical outcome for patients with metastatic pancreatic carcinoma (PC) remains poor. Epidermal growth factor receptor (EGFR) is detectable in PC, suggesting that EGFR is a rational target in PC. We conducted a phase I clinical trial to evaluate the safety and efficacy of autologous anti-EGFR chimeric antigen receptor-modified T (CAR T-EGFR) cells in patients with metastatic PC. The expression levels of EGFR on tumor cells detected by immunohistochemistry were required to be more than 50%. Sixteen patients were enrolled and received one to three cycles of the CAR T-EGFR cell infusion within 6 months (median dose of CAR T cells: 3.48 × 106/kg; range, 1.31 to 8.9 × 106/kg) after the conditioning regimen with 100 to 200 mg/m2 nab-paclitaxel and 15 to 35 mg/kg cyclophosphamide. Grade ≥3 adverse events included fever/fatigue, nausea/vomiting, mucosal/cutaneous toxicities, pleural effusion and pulmonary interstitial exudation and were reversible. Of 14 evaluable patients, four achieved partial response for 2-4 months, and eight had stable disease for 2-4 months. The median progression-free survival was 3 months (range, 4-months) from the first cycle of CAR T-EGFR cell treatment, and the median overall survival of all 14 evaluable patients was 4.9 months (range, 2.9-30 months). Decreased EGFR expression on tumor cells was observed in patients who achieved stable disease with shrinkage of metastatic lesions in the liver, and enrichment of central memory T cells in infused cells improved the clinical response. In conclusion, the treatment with CAR T-EGFR cells is safe and effective in patients with metastatic PC. This trial was registered at www.clinicaltrials.gov (identifier no: NCT01869166).


Asunto(s)
Receptores ErbB/metabolismo , Neoplasias Pancreáticas/secundario , Neoplasias Pancreáticas/terapia , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Adulto , Anciano , Femenino , Humanos , Inmunoterapia Adoptiva/efectos adversos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/inmunología , Fenotipo , Acondicionamiento Pretrasplante , Resultado del Tratamiento , Neoplasias Pancreáticas
18.
FASEB J ; 33(2): 2132-2143, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30252535

RESUMEN

Epithelial barrier maintenance and regulation requires an intact perijunctional actomyosin ring underneath the cell-cell junctions. By searching for known factors affecting the actin cytoskeleton, we identified Krev interaction trapped protein 1 (KRIT1) as a major regulator for epithelial barrier function through multiple mechanisms. KRIT1 is expressed in both small intestinal and colonic epithelium, and KRIT1 knockdown in differentiated Caco-2 intestinal epithelium decreases epithelial barrier function and increases cation selectivity. KRIT1 knockdown abolished Rho-associated protein kinase-induced and myosin II motor inhibitor-induced barrier loss by limiting both small and large molecule permeability but did not affect myosin light chain kinase-induced increases in epithelial barrier function. These data suggest that KRIT1 participates in Rho-associated protein kinase- and myosin II motor-dependent (but not myosin light chain kinase-dependent) epithelial barrier regulation. KRIT1 knockdown exacerbated low-dose TNF-induced barrier loss, along with increased cleaved caspase-3 production. Both events are blocked by pan-caspase inhibition, indicating that KRIT1 regulates TNF-induced barrier loss through limiting epithelial apoptosis. These data indicate that KRIT1 controls epithelial barrier maintenance and regulation through multiple pathways, suggesting that KRIT1 mutation in cerebral cavernous malformation disease may alter epithelial function and affect human health.-Wang, Y., Li, Y., Zou, J., Polster, S. P., Lightle, R., Moore, T., Dimaano, M., He, T.-C., Weber, C. R., Awad, I. A., Shen, L. The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation.


Asunto(s)
Apoptosis , Permeabilidad de la Membrana Celular , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Mucosa Intestinal/patología , Proteína KRIT1/metabolismo , Miosina Tipo II/metabolismo , Quinasas Asociadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Células CACO-2 , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Proteína KRIT1/genética , Miosina Tipo II/genética , Fosforilación , Transducción de Señal , Quinasas Asociadas a rho/genética
19.
Environ Sci Technol ; 54(22): 14192-14203, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33118825

RESUMEN

Coastal reservoirs are potentially CH4 emission hotspots owing to their biogeochemical role as the sinks of anthropogenic carbon and nutrients. Yet, the fine-scale spatial variations in CH4 concentrations and fluxes in coastal reservoirs remain poorly understood, hampering an accurate determination of reservoir CH4 budgets. In this study, we examined the spatial variability of diffusive CH4 fluxes and their drivers at a subtropical coastal reservoir in southeast China using high spatial resolution measurements of dissolved CH4 concentrations and physicochemical properties of the surface water. Overall, this reservoir acted as a consistent source of atmospheric CH4, with a mean diffusive flux of 16.1 µmol m-2 h-1. The diffusive CH4 flux at the reservoir demonstrated considerable spatial variations, with the coefficients of variation ranging between 199 and 426% over the three seasons. The shallow water zone (comprising 23% of the reservoir area) had a disproportionately high contribution (56%) to the whole-reservoir diffusive CH4 emissions. Moreover, the mean CH4 flux in the sewage-affected sectors was significantly higher than that in the nonsewage-affected sectors. The results of bootstrap analysis further showed that increasing the sample size from 10 to 100 significantly reduced the relative standard deviation of mean diffusive CH4 flux from 73.7 to 3.4%. Our findings highlighted the role of sewage in governing the spatial variations in reservoir CH4 emissions and the importance of high spatial resolution data to improve the reliability of flux estimates for assessing the contribution of reservoirs to the regional and global CH4 budgets.


Asunto(s)
Metano , Aguas del Alcantarillado , Dióxido de Carbono/análisis , China , Metano/análisis , Reproducibilidad de los Resultados , Estaciones del Año
20.
Environ Res ; 186: 109576, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32361080

RESUMEN

Coastal wetlands play an increasingly important role in regulating greenhouse gas (GHG) fluxes and thus affecting climate change. However, the overall magnitude, trend, and environmental drivers of GHG fluxes in these wetlands of China remain uncertain. Herein, we synthesized data from 70 publications involving 187 field observations to identify patterns and drivers of GHG fluxes across coastal wetlands in China. Average methane (CH4), nitrous oxide (N2O) fluxes, and carbon dioxide (CO2) emissions (ecosystem respiration) across coastal wetlands were estimated as 2.20±0.31 mg·m-2·h-1, 16.44±2.96 µg·m-2·h-1, and 388.76±42.28 mg·m-2·h-1, respectively. GHG emissions varied with tidal inundation, where CH4 and CO2 emissions during tidal inundation were lower than during ebbing. CH4 and CO2 emissions from wetlands decreased linearly with increasing latitude, while N2O did not. CH4 fluxes were positively related to air temperature and aboveground biomass, and CO2 emissions were positively related to soil organic carbon. N2O fluxes were lower with increasing soil pH, and CH4 and CO2 emissions were greater with increasing soil moisture. Based on the results of sustained-flux global warming potential and sustained-flux global cooling potential models, our paper indicate that the fluxes of CH4 and N2O in coastal wetlands have a positive feedback to global warming, which is mainly driven by the CH4 emission. Our synthesis improved understanding of the roles of coastal wetlands in the ecosystem C cycle under global change. We suggest that long-term field observations of GHG fluxes across a wider range of spatiotemporal scales are urgently required to improve the prediction accuracy in GHG fluxes and the assessment of net GHG balance and its contribution to the GWP of coastal wetlands.


Asunto(s)
Gases de Efecto Invernadero , Carbono , Dióxido de Carbono/análisis , China , Ecosistema , Monitoreo del Ambiente , Metano/análisis , Óxido Nitroso , Suelo , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA