Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Res ; 231(Pt 1): 116024, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121345

RESUMEN

This study aims to prepare an ion-imprinted polymer (IIP) using copper sulfate as a template and potassium persulfate as an initiator to selectively adsorb copper ions (Cu2+) from aqueous solutions and in an attempt to also test its applicability for removing strontium ions (Sr2+). The prepared polymer was denoted by IIP-Cu. Various physical and chemical characterizations were performed for the prepared IIP-Cu. The scanning electron microscopy and transmission electron microscopy analyses confirmed the cavities formed after the removal of the template. It also indicated that the IIP-Cu had a rough and porous topology. The X-ray photoelectron spectroscopy confirmed the successful removal of the Cu template from IIP-Cu. The Brunauer-Emmet-Teller revealed that the surface area of IIP-Cu is as high as 152.3 m2/g while the pore radius is 8.51 nm. The effect of pH indicated that the maximum adsorption of Cu2+ was achieved at pH 8 with 98.7%. Isotherm studies revealed that the adsorption of Cu2+ was best explained using Langmuir models with a maximum adsorption capacity of 159 mg/g. The effect of temperature revealed that an increase in temperature had an adverse impact on Cu2+ removal from the aqueous solution, which was further confirmed by thermodynamic studies. The negative value of standard enthalpy change (-4.641 kJ/mol) revealed that the adsorption of Cu2+ onto IIP-Cu was exothermic. While the continuous increase in Gibbs free energy from -6776 kJ/mol to -8385 kJ/mol with the increase in temperature indicated that the adsorption process was spontaneous and feasible. Lastly, the positive value of the standard entropy change (0.023 J/mol.K) suggested that the Cu2+ adsorption onto IIP-Cu had a good affinity at the solid-liquid surface. The efficiency of the prepared IIP-Cu was also tested by studying the adsorption capacity using Sr2+ and real brine water. The results revealed that IIP-Cu was able to remove 63.57% of Sr2+ at pH 8. While the adsorption studies revealed that the experiment was best described using the Langmuir model with a maximum adsorption capacity of 76.92 mg/g. Additionally, IIP-Cu was applied in a real brine sample, which consisted of various metal ions. The highest percentage of Cu2+ removal was 90.6% and the lowest was 65.63% in 1:4 and 1:1 brine ratios, respectively. However, this study indicates the successful application of IIP-Cu in a real sample when it comes to the effective and efficient removal of Cu2+ in a solution consisting of various competing ions.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Cobre/química , Polímeros/química , Iones , Ósmosis , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/química
2.
Waste Manag Res ; 39(7): 995-1004, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33327900

RESUMEN

The citrus industry is considered one of the main contributors to agricultural waste. Peels are commonly used in the food industry or as feedstock in biorefining. In this study, the potential of waste orange peel biochar for agricultural applications in sandy soil was investigated. This will not only increase the percentage of agricultural waste recycling, but also lead to more sustainable agriculture with environmental benefits such as carbon sequestration. Biochar was produced through slow pyrolysis in the temperature range 300-600°C and at two holding durations (10 min and 60 min). Both factors had a significant impact on the physicochemical characteristics of biochar in the heating region 300-450°C. However, varying the holding time for pyrolysis temperatures beyond 450°C had a diminishing effect on biochar properties compared with the impact of increasing pyrolysis temperature. The study also looked at certain properties that are specific to agricultural application not previously reported for orange peel. Very high cation exchange capacities of 70 cmol kg-1 were achieved at 300°C, whereas water holding capacity was not strongly influenced by pyrolysis conditions. Preliminary planting tests indicate potential for improving agricultural sustainability in sandy soils. The technoeconomic analysis of biochar showed that the pyrolysis process can be profitable with sufficient plant capacity.


Asunto(s)
Citrus sinensis , Pirólisis , Carbón Orgánico , Arena , Suelo
3.
Angew Chem Int Ed Engl ; 59(32): 13341-13346, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32348022

RESUMEN

Light-induced spin-state switching is one of the most attractive properties of spin-crossover materials. In bulk, low-spin (LS) to high-spin (HS) conversion via the light-induced excited spin-state trapping (LIESST) effect may be achieved with a visible light, while the HS-to-LS one (reverse-LIESST) requires an excitation in the near-infrared range. Now, it is shown that those phenomena are strongly modified at the interface with a metal. Indeed, an anomalous spin conversion is presented from HS state to LS state under blue light illumination for FeII spin-crossover molecules that are in direct contact with metallic (111) single-crystal surfaces (copper, silver, and gold). To interpret this anomalous spin-state switching, a new mechanism is proposed for the spin conversion based on the light absorption by the substrate that can generate low energy valence photoelectrons promoting molecular vibrational excitations and subsequent spin-state switching at the molecule-metal interface.

4.
Small ; 14(51): e1804066, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30370995

RESUMEN

Phosphorene is a new 2D material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct bandgap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) was investigated by molecular beam epitaxy and the obtained structure described as a blue phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a bandgap value equal to at least 0.8 eV, are synthesized on Au(111). The experimental investigations, coupled with density functional theory calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures are determined.

5.
Phys Chem Chem Phys ; 19(28): 18580-18586, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28686267

RESUMEN

We studied the growth of Ge layers on Au(111) under ultra-high vacuum conditions from the submonolayer regime up to a few layers with Scanning Tunneling Microscopy (STM), Direct Recoiling Spectroscopy (DRS) and Low Energy Electron Diffraction (LEED). Most STM images for the thicker layers are consistent with a commensurate 5 × 8 arrangement. The high surface sensitivity of TOF-DRS allows us to confirm the coexistence of Au and Ge atoms in the top layer for all stages of growth. An estimation of the Au to Ge ratio at the surface of the thick layer gives about 1 Au atom per 2 Ge ones. When the growth is carried out at sample temperatures higher than about 420 K, a fraction of the deposited Ge atoms migrate into the bulk of Au. This incorporation of Ge into the bulk reduces the growth rate of the Ge films, making it more difficult to obtain films thicker than a few layers. After sputtering the Ge/Au surface, the segregation of bulk Ge atoms to the surface occurs for temperatures ≥600 K. The surface obtained after segregation of Ge reaches a stable condition (saturation) with an n × n symmetry with n on the order of 14.

6.
Sci Rep ; 12(1): 6806, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474113

RESUMEN

The spontaneous formation of biological substances, such as human organs, are governed by different stimuli driven by complex 3D self-organization protocols at the molecular level. The fundamentals of such molecular self-assembly processes are critical for fabrication of advanced technological components in nature. We propose and experimentally demonstrate a promising 3D printing method with self-healing property based on molecular self-assembly-monolayer principles, which is conceptually different than the existing 3D printing protocols. The proposed molecular building-block approach uses metal ion-mediated continuous self-assembly of organic molecular at liquid-liquid interfaces to create 2D and 3D structures. Using this technique, we directly printed nanosheets and 3D rods using dithiol molecules as building block units.


Asunto(s)
Impresión Tridimensional , Humanos
7.
J Phys Chem Lett ; 13(32): 7514-7520, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944010

RESUMEN

We demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a FeII SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with nonequilibrium Green's function (NEGF) calculations and a generic theoretical model. While the DFT+NEGF calculations reproduce NDR for a special atomically sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather than the molecule itself. We, therefore, propose a Coulomb blockade model involving three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure.

8.
Front Integr Neurosci ; 16: 879832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655952

RESUMEN

Extracellular vesicles (EVs) are membrane vesicles released from cells to the extracellular space, involved in cell-to-cell communication by the horizontal transfer of biomolecules such as proteins and RNA. Because EVs can cross the blood-brain barrier (BBB), circulating through the bloodstream and reflecting the cell of origin in terms of disease prognosis and severity, the contents of plasma EVs provide non-invasive biomarkers for neurological disorders. However, neuronal EV markers in blood plasma remain unclear. EVs are very heterogeneous in size and contents, thus bulk analyses of heterogeneous plasma EVs using Western blot and ELISA have limited utility. In this study, using flow cytometry to analyze individual neuronal EVs, we show that our plasma EVs isolated by size exclusion chromatography are mainly CD63-positive exosomes of endosomal origin. As a neuronal EV marker, neural cell adhesion molecule (NCAM) is highly enriched in EVs released from induced pluripotent stem cells (iPSCs)-derived cortical neurons and brain organoids. We identified the subpopulations of plasma EVs that contain NCAM using flow cytometry-based individual EV analysis. Our results suggest that plasma NCAM-positive neuronal EVs can be used to discover biomarkers for neurological disorders.

9.
RSC Adv ; 11(48): 30172-30182, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35480281

RESUMEN

At present, phosphate removal and recovery from wastewater is gaining wide attention due to the dual issues of eutrophication, caused by the increased production of algae, and universal phosphorus scarcity. In this study, a layered zinc hydroxide (LZH) was synthesized by a simple precipitation method and characterized via various techniques. Experiments investigating the effect of contact time, pH, LZH dose, initial phosphate concentration, and co-existing ions on phosphate adsorption were conducted. LZH exhibited a high phosphate adsorption capacity (135.4 mg g-1) at a neutral pH. More than 50% of phosphate was removed within the first 60 s of contact time at an initial phosphate concentration of 5 mg L-1. Phosphate removal using the as-prepared LZH adsorbent was also tested in real treated sewage effluent reducing the residual phosphate amount to levels inhibiting to the growth of algae. Furthermore, phosphate desorption from LZH was investigated using acetic acid and sodium hydroxide regenerants which showed to be very effective for phosphate recovery.

10.
Sci Rep ; 11(1): 6342, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737579

RESUMEN

Heterogeneous catalytic ozonation is an effective approach to degrade refractory organic pollutants in water. However, ozonation catalysts with combined merits of high activity, good reusability and low cost for practical industrial applications are still rare. This study aims to develop an efficient, stable and economic ozonation catalyst for the degradation of Ibuprofen, a pharmaceutical compound frequently detected as a refractory pollutant in treated wastewaters. The novel three-dimensional network-structured catalyst, comprising of δ-MnO2 nanosheets grown on woven carbon microfibers (MnO2 nanosheets/carbon microfiber), was synthesized via a facile hydrothermal approach. Catalytic ozonation performance of Ibuprofen removal in water using the new catalyst proves a significant enhancement, where Ibuprofen removal efficiency of close to 90% was achieved with a catalyst loading of 1% (w/v). In contrast, conventional ozonation was only able to achieve 65% removal efficiency under the same operating condition. The enhanced performance with the new catalyst could be attributed to its significantly increased available surface active sites and improved mass transfer of reaction media, as a result of the special surface and structure properties of this new three-dimensional network-structured catalyst. Moreover, the new catalyst displays excellent stability and reusability for ibuprofen degradation over successive reaction cycles. The facile synthesis method and low-cost materials render the new catalyst high potential for industrial scaling up. With the combined advantages of high efficiency, high stability, and low cost, this study sheds new light for industrial applications of ozonation catalysts.

11.
Nat Commun ; 12(1): 5160, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453043

RESUMEN

The emergence of peculiar phenomena in 1D phosphorene chains (P chains) has been proposed in theoretical studies, notably the Stark and Seebeck effects, room temperature magnetism, and topological phase transitions. Attempts so far to fabricate P chains, using the top-down approach starting from a few layers of bulk black phosphorus, have failed to produce reliably precise control of P chains. We show that molecular beam epitaxy gives a controllable bottom-up approach to grow atomically thin, crystalline 1D flat P chains on a Ag(111) substrate. Scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations reveal that the armchair-shaped chains are semiconducting with an intrinsic 1.80 ± 0.20 eV band gap. This could make these P chains an ideal material for opto-electronic devices.

12.
J Phys Chem Lett ; 12(45): 11029-11034, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34743521

RESUMEN

Bistable spin-crossover molecules are particularly interesting for the development of innovative electronic and spintronic devices as they present two spin states that can be controlled by external stimuli. In this paper, we report the voltage-induced switching of the high spin/low spin electronic states of spin-crossover molecules self-assembled in dense 2D networks on Au(111) and Cu(111) by scanning tunneling microscopy at low temperature. On Au(111), voltage pulses lead to the nonlocal switching of the molecules from any─high or low─spin state to the other followed by a spontaneous relaxation toward their initial state within minutes. On the other hand, on Cu(111), single molecules can be addressed at will. They retain their new electronic configuration after a voltage pulse. The memory effect demonstrated on Cu(111) is due to an interplay between long-range intermolecular interaction and molecule/substrate coupling as confirmed by mechanoelastic simulations.

13.
RSC Adv ; 10(51): 30934-30943, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516062

RESUMEN

This work relates to direct synthesis of the two-dimensional (2D) transition metal dichalchogenide (TMD) PtSe2 using an original method based on chemical deposition during immersion of a Pt(111) surface into aqueous Na2Se solution. Annealing of the sample induces significant modifications in the structural and electronic properties of the resulting PtSe2 film. We report systematic investigations of temperature dependent phase transitions by combining synchrotron based high-resolution X-ray photoemission (XPS), low temperature scanning tunnelling microscopy (LT-STM) and low energy electron diffraction (LEED). From the STM images, a phase transition from TMD 2H-PtSe2 to Pt2Se alloy monolayer structure is observed, in agreement with the LEED patterns showing a transition from (4 × 4) to (√3 × âˆš3)R30° and then to a (2 × 2) superstructure. This progressive evolution of the surface reconstruction has been monitored by XPS through systematic de-convolution of the Pt4f and Se3d core level peaks at different temperatures. The present work provides an alternative method for the large scale fabrication of 2D transition metal dichalchogenide films.

14.
Beilstein J Nanotechnol ; 7: 263-277, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977383

RESUMEN

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA