Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 31(18): 4884-4899, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35866574

RESUMEN

As species arise, evolve and diverge, they are shaped by forces that unfold across short and long timescales and at both local and vast geographical scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species. We analysed sequences of 1402 orthologous ultraconserved element (UCE) loci from 75 individuals to identify population genetic structure and historical demographic patterns across the continent-wide range of a cold-adapted ant, the winter ant, Prenolepis imparis. We recovered five well-supported, genetically isolated clades representing lineages that diverged from 8.2-2.2 million years ago. These include: (i) an early diverging lineage located in Florida, (ii) a lineage that spans the southern United States, (iii) populations that extend across the midwestern and northeastern United States, (iv) populations from the western United States and (v) populations in southwestern Arizona and Mexico. Population genetic analyses revealed little or no gene flow among these lineages, but patterns consistent with more recent gene flow among populations within lineages, and localized structure with migration in the western United States. High support for five major geographical lineages and lack of evidence of contemporary gene flow indicate in situ diversification across the species' range, producing relatively ancient lineages that persisted through subsequent climate change and glaciation during the Quaternary.


Asunto(s)
Hormigas , Animales , Hormigas/genética , ADN Mitocondrial/genética , Flujo Génico , Variación Genética/genética , Genética de Población , Humanos , Filogenia , Filogeografía
2.
PLoS One ; 15(10): e0239558, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002025

RESUMEN

Climate change is a serious threat to biodiversity; it is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as the environmental temperature influences myriad aspects of their biology, from optimal foraging time to developmental rate. In this study, we conducted an RNA-seq analysis to identify stress-induced genes in the winter ant (Prenolepis imparis). We quantified gene expression during heat and cold stress relative to a control temperature. From each of our conditions, we sequenced the transcriptome of three individuals. Our de novo assembly included 13,324 contigs that were annotated against the nr and SwissProt databases. We performed gene ontology and enrichment analyses to gain insight into the physiological processes involved in the stress response. We identified a total of 643 differentially expressed genes across both treatments. Of these, only seven genes were differentially expressed in the cold-stressed ants, which could indicate that the temperature we chose for trials did not induce a strong stress response, perhaps due to the cold adaptations of this species. Conversely, we found a strong response to heat: 426 upregulated genes and 210 downregulated genes. Of these, ten were expressed at a greater than ten-fold change relative to the control. The transcripts we could identify included those encoding for protein folding genes, heat shock proteins, histones, and Ca2+ ion transport. One of these transcripts, hsc70-4L was found to be under positive selection. We also characterized the functional categories of differentially expressed genes. These candidate genes may be functionally conserved and relevant for related species that will deal with rapid climate change.


Asunto(s)
Adaptación Fisiológica/genética , Hormigas/genética , Hormigas/fisiología , Frío , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/fisiología , Animales , Cambio Climático , Evolución Molecular , Ontología de Genes , Respuesta al Choque Térmico/genética , Anotación de Secuencia Molecular , Selección Genética
3.
Ecol Evol ; 10(11): 4749-4761, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32551058

RESUMEN

Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short-term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short-term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short-term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill-coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short-term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill-coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high-elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high-temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA