Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 42(25): 4980-4994, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35606142

RESUMEN

Ion channels at the nodes of Ranvier (NRs) are believed to play essential roles in intrinsic electrophysiological properties and saltatory conduction of action potentials (AP) at the NRs of myelinated nerves. While we have recently shown that two-pore domain potassium (K2P) channels play a key role at the NRs of Aß-afferent nerves, K+ channels and their functions at the NRs of mammalian motor nerves remain elusive. Here we addressed this issue by using ex vivo preparations of lumbar spinal ventral nerves from both male and female rats and the pressure-patch-clamp recordings at their NRs. We found that depolarizing voltages evoked large noninactivating outward currents at NRs. The outward currents could be partially inhibited by voltage-gated K+ channel blockers, largely inhibited by K2P blockers and cooling temperatures. Inhibition of the outward currents by voltage-gated K+ channel blockers, K2P blockers, or cooling temperatures significantly altered electrophysiological properties measured at the NRs, including resting membrane potential, input resistance, AP width, AP amplitude, AP threshold, and AP rheobase. Furthermore, K2P blockers and cooling temperatures significantly reduced saltatory conduction velocity and success rates of APs in response to high-frequency stimulation. Voltage-gated K+ channel blockers reduced AP success rates at high-frequency stimulation without significantly affecting saltatory conduction velocity. Collectively, both K2P and voltage-gated K+ channels play significant roles in intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. The effects of cooling temperatures on saltatory conduction are at least partially mediated by K2P channels at the NRs.SIGNIFICANCE STATEMENT Ion channels localized at the NRs are believed to be key determinants of saltatory conduction on myelinated nerves. However, ion channels and their functions at the NRs have not been fully studied in different types of mammalian myelinated nerves. Here we use the pressure-patch-clamp recordings to show that both K2P and voltage-gated K+ channels play significant roles in intrinsic electrophysiological properties and saltatory conduction at NRs of lumbar spinal ventral nerves of rats. Furthermore, cooling temperatures exert effects on saltatory conduction via inhibition of ion channels at the NRs. Our results provide new insights into saltatory conduction on myelinated nerves and may have physiological as well as pathologic implications.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Mamíferos , Potenciales de la Membrana , Nódulos de Ranvier , Ratas , Nervios Espinales
2.
Mol Pain ; 19: 17448069231187366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369680

RESUMEN

Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/ß-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/ß-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/ß-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/ß-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/ß-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.


Asunto(s)
Fibras Nerviosas Mielínicas , Conducción Nerviosa , Ratas , Animales , Fibras Nerviosas Mielínicas/fisiología , Nódulos de Ranvier , Potenciales de Acción/fisiología , Nervio Ciático/fisiología
3.
Mol Pain ; 17: 17448069211021271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056968

RESUMEN

Aß-afferents in maxillary or V2 trigeminal ganglion (TG) neurons are somatosensory neurons that may be involved in both non-nociceptive and nociceptive functions in orofacial regions. However, electrophysiological properties of these V2 trigeminal Aß-afferent neurons have not been well characterized so far. Here, we used rat ex vivo trigeminal nerve preparations and applied patch-clamp recordings to large-sized V2 TG neurons to characterize their electrophysiological properties. All the cells recorded had afferent conduction velocities in the range of Aß-afferent conduction speeds. However, these V2 trigeminal Aß-afferent neurons displayed different action potential (AP) properties. APs showed fast kinetics in some cells but slow kinetics with shoulders in repolarization phases in other cells. Based on the derivatives of voltages in AP repolarization with time (dV/dt), we classified V2 trigeminal Aß-afferent neurons into four types: type I, type II, type IIIa and type IIIb. Type I V2 trigeminal Aß-afferent neurons had the largest dV/dt of repolarization, the fastest AP conduction velocities, the shortest AP and afterhyperpolarization (AHP) durations, and the highest AP success rates. In contrast, type IIIb V2 trigeminal Aß-afferent neurons had the smallest dV/dt of AP repolarization, the slowest AP conduction velocities, the longest AP and AHP durations, and the lowest AP success rates. The type IIIb cells also had significantly lower voltage-activated K+ currents. For type II and type IIIa V2 trigeminal Aß-afferent neurons, AP parameters were in the range between those of type I and type IIIb V2 trigeminal Aß-afferent neurons. Our electrophysiological classification of V2 trigeminal Aß-afferent neurons may be useful in future to study their non-nociceptive and nociceptive functions in orofacial regions.


Asunto(s)
Neuronas Aferentes , Ganglio del Trigémino , Potenciales de Acción , Animales , Potenciales de la Membrana , Ratas , Ratas Sprague-Dawley
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 91(10): 560-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26666306

RESUMEN

This study focuses on the structure and function of the primary sensory neurons that innervate vibrissal follicles in the rat. Both the peripheral and central terminations, as well as their firing properties were identified using intracellular labelling and recording in trigeminal ganglia in vivo. Fifty-one labelled neurons terminating peripherally, as club-like, Merkel, lanceolate, reticular or spiny endings were identified by their morphology. All neurons responded robustly to air puff stimulation applied to the vibrissal skin. Neurons with club-like endings responded with the highest firing rates; their peripheral processes rarely branched between the cell body and their terminal tips. The central branches of these neurons displayed abundant collaterals terminating within all trigeminal nuclei. Analyses of three-dimensional reconstructions reveal a palisade arrangement of club-like endings bound to the ringwulst by collagen fibers. Our morphological findings suggest that neurons with club-like endings sense mechanical aspects related to the movement of the ringwulst and convey this information to all trigeminal nuclei in the brainstem.


Asunto(s)
Mecanorreceptores/citología , Ganglio del Trigémino/citología , Vibrisas/fisiología , Animales , Fenómenos Electrofisiológicos , Imagenología Tridimensional , Espacio Intracelular/metabolismo , Masculino , Ratas , Ratas Wistar , Ganglio del Trigémino/fisiología
5.
Proc Jpn Acad Ser B Phys Biol Sci ; 88(10): 583-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23229751

RESUMEN

Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.


Asunto(s)
Axones/fisiología , Folículo Piloso/inervación , Proteínas Luminiscentes/genética , Terminaciones Nerviosas/fisiología , Neuronas Aferentes/citología , Antígenos Thy-1/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Tacto/fisiología
6.
Mol Brain ; 15(1): 64, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858950

RESUMEN

Previous immunohistochemical studies have shown the expression of KCNQ2 channels at nodes of Ranvier (NRs) of myelinated nerves. However, functions of these channels at NRs remain elusive. In the present study, we addressed this issue by directly applying whole-cell patch-clamp recordings at NRs of rat lumbar spinal ventral nerves in ex vivo preparations. We show that depolarizing voltages evoke large non-inactivating outward currents at NRs, which are partially inhibited by KCNQ channel blocker linopirdine and potentiated by KCNQ channel activator retigabine. Furthermore, linopirdine significantly alters intrinsic electrophysiological properties of NRs to depolarize resting membrane potential, increase input resistance, prolong AP width, reduce AP threshold, and decrease AP amplitude. On the other hand, retigabine significantly decreases input resistance and increases AP rheobase at NRs. Moreover, linopirdine increases excitability at NRs by converting single AP firing into multiple AP firing at many NRs. Saltatory conduction velocity is significantly reduced by retigabine, and AP success rate at high stimulation frequency is significantly increased by linopirdine. Collectively, KCNQ2 channels play a significant role in regulating intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. These findings may provide insights into how the loss-of-function mutation in KCNQ2 channels can lead to neuromuscular disorders in human patients.


Asunto(s)
Canal de Potasio KCNQ2/metabolismo , Nódulos de Ranvier , Nervios Espinales , Animales , Fenómenos Electrofisiológicos , Canal de Potasio KCNQ2/genética , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Nódulos de Ranvier/metabolismo , Ratas
8.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34462308

RESUMEN

Temperature-sensitive two-pore domain potassium channels (thermal K2P) are recently shown to cluster at nodes of Ranvier (NRs) and play a key role in action potential (AP) regeneration and conduction on Aß-afferent nerves. Cooling temperatures affect AP regeneration and conduction on Aß-afferent nerves but the underlying mechanisms are not completely understood. Here, we have performed patch-clamp recordings directly at the NR in an ex vivo trigeminal nerve preparation. We have characterized the effects of cooling temperatures on intrinsic electrophysiological properties and AP regeneration at the NR on rat Aß-afferent nerves, and determined whether and how thermal K2P channels may be involved in the effects of cooling temperatures. We show that cooling temperatures from 35°C to 15°C decrease outward leak currents, increase input resistance, depolarize resting membrane potential (RMP), broaden AP width and increase latency of AP threshold at the NR. We further demonstrate that cooling temperatures impair regeneration of high-frequency AP trains at the NR. The effects of cooling temperatures on the intrinsic electrophysiological properties and regeneration of high-frequency AP trains at the NR can be partially reversed by BL-1249 (BL), arachidonic acid (AA), and intra-axonal protons, three thermal K2P activators, indicating the involvement of thermal K2P channels. Moreover, we show that at cooling temperatures there are interplays among thermal K2P channels, RMPs, and voltage-gated Na+ channels, which together limit regeneration of high-frequency AP trains at the NR. Our findings demonstrate a new role of thermal K2P channels in temperature-dependent conduction of high-frequency sensory signals.


Asunto(s)
Canales de Potasio , Nódulos de Ranvier , Potenciales de Acción , Animales , Potenciales de la Membrana , Ratas , Temperatura
9.
STAR Protoc ; 2(1): 100266, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490982

RESUMEN

The patch-clamp recording technique is indispensable for studying ion channel functions of cells but is challenging to apply to the node of Ranvier, a key site where action potentials are conducted along myelinated nerves. We have developed a pressure-clamped patch-clamp recording method applying to the node of Ranvier of rat myelinated nerves. The step-by-step protocol described here allows researchers to apply this approach to study mechanisms underlying saltatory conduction and information processing in myelinated nerves of mammals. For complete information on the generation and use of this protocol, please refer to Kanda et al. (2019).


Asunto(s)
Potenciales de Acción , Fibras Nerviosas Mielínicas/metabolismo , Técnicas de Placa-Clamp , Nódulos de Ranvier/metabolismo , Animales , Ratas
10.
Neuron ; 104(5): 960-971.e7, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31630908

RESUMEN

Rapid conduction of nerve impulses is critical in life and relies on action potential (AP) leaps through the nodes of Ranvier (NRs) along myelinated nerves. While NRs are the only sites where APs can be regenerated during nerve conduction on myelinated nerves, ion channel mechanisms underlying the regeneration and conduction of APs at mammalian NRs remain incompletely understood. Here, we show that TREK-1 and TRAAK, the thermosensitive and mechanosensitive two-pore-domain potassium (K2P) channels, are clustered at NRs of rat trigeminal Aß-afferent nerves with a density over 3,000-fold higher than that on their somas. These K2P channels, but not voltage-gated K+ channels as in other parts of nerves, are required for rapid AP repolarization at the NRs. Furthermore, these channels permit high-speed and high-frequency AP conduction along the myelinated afferent nerves, and loss of function of these channels at NRs retards nerve conduction and impairs sensory behavioral responses in animals.


Asunto(s)
Potenciales de Acción/fisiología , Conducción Nerviosa/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Masculino , Fibras Nerviosas Mielínicas/metabolismo , Neuronas Aferentes/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA