Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Virologie (Montrouge) ; 24(5): 325-342, 2020 Oct 01.
Artículo en Francés | MEDLINE | ID: mdl-33111706

RESUMEN

Herpes simplex virus (HSV) infections remain an important cause of morbidity among immunocompromised patients, such as transplant recipients and human immunodeficiency virus [HIV]-infected individuals. Only few antiviral drugs are available to treat HSV infections: (val)acyclovir, foscarnet, and cidofovir. Prophylactic and curative antiviral treatments administered during prolonged periods among patients with altered T-cell immunity may lead to the emergence of HSV resistance to antivirals, contributing to a challenging therapeutic management of viral infection. The persistence of herpetic lesions after 10 days of well-conducted antiviral therapy is suggestive of viral resistance. Resistance to antivirals can be detected using genotypic methods (identifications of antiviral resistance-associated mutations by sequencing genes encoding viral proteins involved in the mechanism of action of antivirals) or phenotypic methods (measure of antiviral drug concentration inhibiting 50% of viral replication in cell culture). The prevalence of HSV resistance to acyclovir is below 1% in immunocompetent individuals, except those with herpetic keratitis for whom prevalence can reach 7%, and varies from 3.5% to 11% in immunocompromised patients. Adverse effects and the absence of eradication of viral latent infection constitute other limits to the use of antiviral drugs. New antiviral compounds undergoing clinical trials and novel potential viral targets seem very promising to enlarge the panel of efficient compounds to treat HSV infections.


Asunto(s)
Antivirales , Herpes Simple , Aciclovir/farmacología , Aciclovir/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Foscarnet/uso terapéutico , Herpes Simple/tratamiento farmacológico , Humanos , Simplexvirus
2.
J Infect Dis ; 217(5): 790-801, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29186456

RESUMEN

Background: Genital herpes is an important cofactor for acquisition of human immunodeficiency virus (HIV) infection, and effective prophylaxis is a helpful strategy to halt both HIV and herpes simplex virus (HSV) transmission. The antiretroviral agent tenofovir, formulated as a vaginal microbicide gel, was shown to reduce the risk of HIV and HSV type 2 (HSV-2) acquisition. Methods: HSV type 1 (HSV-1) and HSV-2 mutants were selected for resistance to tenofovir and PMEO-DAPy (6-phosphonylmethoxyethoxy-2,4-diaminopyrimidine, an acyclic nucleoside phosphonate with dual anti-HSV and anti-HIV activity) by stepwise dose escalation. Several plaque-purified viruses were characterized phenotypically (drug resistance profiling) and genotypically (sequencing of the viral DNA polymerase gene). Results: Tenofovir resistant and PMEO-DAPy-resistant viruses harbored specific amino acid substitutions associated with resistance not only to tenofovir and PMEO-DAPy but also to acyclovir and foscarnet. These amino acid changes (A719V, S724N, and L802F [HSV-1] and M789T and A724V [HSV-2]) were also found in clinical isolates recovered from patients refractory to acyclovir and/or foscarnet therapy or in laboratory-derived strains. A total of 10 (HSV-1) and 18 (HSV-2) well-characterized DNA polymerase mutants had decreased susceptibility to tenofovir and PMEO-DAPy. Conclusions: Tenofovir and PMEO-DAPy target the HSV DNA polymerase, and clinical isolates with DNA polymerase mutations emerging under acyclovir and/or foscarnet therapy showed cross-resistance to tenofovir and PMEO-DAPy.


Asunto(s)
Antivirales/farmacología , Exodesoxirribonucleasas/antagonistas & inhibidores , Inhibidores de la Transcriptasa Inversa/farmacología , Tenofovir/farmacología , Proteínas Virales/antagonistas & inhibidores , Aciclovir/farmacología , Sustitución de Aminoácidos , Células Cultivadas , Análisis Mutacional de ADN , ADN Polimerasa Dirigida por ADN/genética , Farmacorresistencia Viral , Exodesoxirribonucleasas/genética , Foscarnet/farmacología , Herpes Genital/virología , Herpes Simple/virología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/aislamiento & purificación , Herpesvirus Humano 2/efectos de los fármacos , Herpesvirus Humano 2/aislamiento & purificación , Humanos , Mutación Missense , Organofosfonatos/farmacología , Pirimidinas/farmacología , Selección Genética , Análisis de Secuencia de ADN , Proteínas Virales/genética
3.
Tumour Virus Res ; 14: 200244, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007768

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive type of skin cancer, which is caused either by integration of the oncogenic Merkel cell polyomavirus (MCPyV) or by accumulation of UV-light induced mutations. Since the response to immune-checkpoint inhibitors is limited, new therapeutic agents need to be explored. Previous studies have shown that MCC cell lines and xenografts are sensitive to MLN0128, a dual mTOR1/2 inhibitor. Prompted by these results and considering that the PI3K/mTOR and MAPK/ERK pathways are the most commonly deregulated pathways in cancer, the combination of MLN0128 with the MEK1/2 inhibitor trametinib was investigated. Importantly, the combined targeting showed to be synergistic in MCC cell lines and induced alterations in the protein levels of downstream elements of the targeted pathways. This synergistic activity implies a reduction in the dose of each inhibitor necessary to reach the same effect that when used as single agents. Therefore, this is a promising approach to improve the clinical management of MCC and to overcome the limited efficacy of single drug regimens owed to the appearance of toxicity or drug resistance.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Cutáneas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Benzoxazoles , Pirimidinas
4.
Cancers (Basel) ; 14(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205840

RESUMEN

Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy.

5.
Biomedicines ; 10(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35327382

RESUMEN

Despite the eradication of smallpox four decades ago, poxviruses continue to be a threat to humans and animals. The arsenal of anti-poxvirus agents is very limited and understanding mechanisms of resistance to agents targeting viral DNA polymerases is fundamental for the development of antiviral therapies. We describe here the phenotypic and genotypic characterization of poxvirus DNA polymerase mutants isolated under selective pressure with different acyclic nucleoside phosphonates, including HPMPC (cidofovir), cHPMPC, HPMPA, cHPMPA, HPMPDAP, HPMPO-DAPy, and PMEO-DAPy, and the pyrophosphate analogue phosphonoacetic acid. Vaccinia virus (VACV) and cowpox virus drug-resistant viral clones emerging under drug pressure were characterized phenotypically (drug-susceptibility profile) and genotypically (DNA polymerase sequencing). Different amino acid changes in the polymerase domain and in the 3'-5' exonuclease domain were linked to drug resistance. Changes in the 3'-5' domain emerged earlier than in the polymerase domain when viruses acquired a combination of mutations. Our study highlights the importance of poxvirus DNA polymerase residues 314, 613, 684, 688, and 851, previously linked to drug resistance, and identified several novel mutations in the 3'-5' exonuclease domain (M313I, F354L, D480Y) and in the DNA polymerase domain (A632T, T831I, E856K, L924F) associated with different drug-susceptibility profiles. Furthermore, a combination of mutations resulted in complex patterns of cross-resistance. Modeling of the VACV DNA polymerase bearing the newly described mutations was performed to understand the effects of these mutations on the structure of the viral enzyme. We demonstrated the emergence of drug-resistant DNA polymerase mutations in complex patterns to be considered in case such mutations should eventually arise in the clinic.

6.
Viruses ; 13(6)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073189

RESUMEN

Drug resistance studies on human γ-herpesviruses are hampered by the absence of an in vitro system that allows efficient lytic viral replication. Therefore, we employed murine γ-herpesvirus-68 (MHV-68) that efficiently replicates in vitro as a model to study the antiviral resistance of γ-herpesviruses. In this study, we investigated the mechanism of resistance to nucleoside (ganciclovir (GCV)), nucleotide (cidofovir (CDV), HPMP-5azaC, HPMPO-DAPy) and pyrophosphate (foscarnet (PFA)) analogues and the impact of these drug resistance mutations on viral fitness. Viral fitness was determined by dual infection competition assays, where MHV-68 drug-resistant viral clones competed with the wild-type virus in the absence and presence of antivirals. Using next-generation sequencing, the composition of the viral populations was determined at the time of infection and after 5 days of growth. Antiviral drug resistance selection resulted in clones harboring mutations in the viral DNA polymerase (DP), denoted Y383SGCV, Q827RHPMP-5azaC, G302WPFA, K442TPFA, G302W+K442TPFA, C297WHPMPO-DAPy and C981YCDV. Without antiviral pressure, viral clones Q827RHPMP-5azaC, G302WPFA, K442TPFA and G302W+K442TPFA grew equal to the wild-type virus. However, in the presence of antivirals, these mutants had a growth advantage over the wild-type virus that was moderately to very strongly correlated with antiviral resistance. The Y383SGCV mutant was more fit than the wild-type virus with and without antivirals, except in the presence of brivudin. The C297W and C981Y changes were associated with a mutator phenotype and had a severely impaired viral fitness in the absence and presence of antivirals. The mutator phenotype caused by C297W in MHV-68 DP was validated by using a CRISPR/Cas9 genome editing approach.


Asunto(s)
Sistemas CRISPR-Cas , ADN Polimerasa Dirigida por ADN/genética , Edición Génica , Genes Virales , Mutación , Rhadinovirus/fisiología , Sustitución de Aminoácidos , Animales , Línea Celular , Codón , ADN Polimerasa Dirigida por ADN/química , Aptitud Genética , Genotipo , Humanos , Ratones , Modelos Moleculares , Fenotipo , Conformación Proteica , Rhadinovirus/efectos de los fármacos , Relación Estructura-Actividad
7.
Antiviral Res ; 182: 104901, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763314

RESUMEN

Murine γ-herpesvirus-68 (MHV-68), genetically and biologically related to human γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, can be easily propagated in vitro allowing drug resistance studies. Previously, we described specific changes in MHV-68 protein kinase (PK) or thymidine kinase (TK) associated with resistance to various purine or pyrimidine nucleoside analogues, respectively. To investigate how specific TK and PK mutations affect viral replication capacity, we performed dual infection competition assays in which wild-type and drug-resistant virus compete in absence or presence of antivirals in Vero cells. The composition of the mixed viral population was analyzed using next-generation sequencing and relative fitness of seven MHV-68 PK or TK mutants was calculated based on the frequency of viral variants at the time of infection and after 5-days growth. A MHV-68 mutant losing the PK function due to a 2-nucleotide deletion was less fit than the wild-type virus in absence of antivirals, consistent with the essential role of viral PKs during lytic replication, but overgrew the wild-type virus under pressure of purine nucleosides. TK mutant viruses, with frameshift or missense mutations, grew equal to wild-type virus in absence of antivirals, in accordance with the viral TK function only being essential in non-replicating or in TK-deficient cells, but were more fit when treated with pyrimidine nucleosides. Moreover, TK missense mutant viruses also increased fitness under pressure of antivirals other than pyrimidine nucleosides, indicating that MHV-68 TK mutations might influence viral fitness by acting on cellular and/or viral functions that are unrelated to nucleoside activation.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Aptitud Genética , Mutación Missense , Proteínas Quinasas/genética , Rhadinovirus/efectos de los fármacos , Timidina Quinasa/genética , Animales , Línea Celular , Chlorocebus aethiops , Ratones , Células 3T3 NIH , Rhadinovirus/genética , Rhadinovirus/fisiología , Células Vero , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
8.
Viruses ; 12(8)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751885

RESUMEN

Human BK polyomavirus (BKPyV) prevalence has been increasing due to the introduction of more potent immunosuppressive agents in transplant recipients, and its clinical interest. BKPyV has been linked mostly to polyomavirus-associated hemorrhagic cystitis, in allogenic hematopoietic stem cell transplant, and polyomavirus-associated nephropathy in kidney transplant patients. BKPyV is a circular double-stranded DNA virus that encodes for seven proteins, of which Viral Protein 1 (VP1), the major structural protein, has been extensively used for genotyping. BKPyV also contains the noncoding control region (NCCR), configured by five repeat blocks (OPQRS) known to be highly repetitive and diverse, and linked to viral infectivity and replication. BKPyV genetic diversity has been mainly studied based on the NCCR and VP1, due to the high occurrence of BKPyV-associated diseases in transplant patients and their clinical implications. Here BKTyper is presented, a free online genotyper for BKPyV, based on a VP1 genotyping and a novel algorithm for NCCR block identification. VP1 genotyping is based on a modified implementation of the BK typing and grouping regions (BKTGR) algorithm, providing a maximum-likelihood phylogenetic tree using a custom internal BKPyV database. Novel NCCR block identification relies on a minimum of 12-bp motif recognition and a novel sorting algorithm. A graphical representation of the OPQRS block organization is provided.


Asunto(s)
Virus BK/clasificación , Proteínas de la Cápside/genética , Técnicas de Genotipaje , ARN no Traducido/genética , Programas Informáticos , Algoritmos , Variación Genética , Filogenia , Replicación Viral/genética
9.
Cancers (Basel) ; 11(9)2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466237

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive type of skin cancer whose main causative agent is Merkel cell polyomavirus (MCPyV). MCPyV is integrated into the genome of the tumor cells in most MCCs. Virus-positive tumor cells constitutively express two viral oncoproteins that promote cell growth: the small (sT) and the large (LT) tumor antigens (TAs). Despite the success of immunotherapies in patients with MCC, not all individuals respond to these treatments. Therefore, new therapeutic options continue to be investigated. Herein, we used CRISPR/Cas9 to target the viral oncogenes in two virus-positive MCC cell lines: MS-1 and WAGA. Frameshift mutations introduced in the target sequence upon repair of the Cas9-induced DNA break resulted in decreased LT protein levels, which subsequently impaired cell proliferation, caused cell cycle arrest, and led to increased apoptosis. Importantly, a virus-negative non-MCC cell line (HEK293T) remained unaffected, as well as those cells expressing a non-targeting single-guide RNA (sgRNA). Thus, we presumed that the noted effects were not due to the off-target activity of the TAs-targeting sgRNAs. Additionally, WAGA cells had altered levels of cellular proteins involved in cell cycle regulation, supporting the observed cell cycle. Taken together, our findings provide evidence for the development of a CRISPR/Cas9-based therapeutic option for virus-positive MCC.

10.
Talanta ; 205: 120120, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450426

RESUMEN

Nucleosides analogues are the cornerstone of the treatment of several human diseases. They are especially at the forefront of antiviral therapy. Their therapeutic efficiency depends on their capacity to be converted to the active nucleoside triphosphate form through successive phosphorylation steps catalyzed by nucleoside/nucleotide kinases. In this context, it is mandatory to develop a rapid, reliable and sensitive enzyme activity test to evaluate their metabolic pathways. In this study, we report a proof of concept to directly monitor on-line nucleotide multiple phosphorylation. The methodology was developed by on-line enzyme bioreactors hyphenated with High-Resolution Mass Spectrometry detection. Human Thymidylate Kinase (hTMPK) and human Nucleoside Diphosphate Kinase (hNDPK) were covalently immobilized on functionalized silica beads, and packed into micro-bioreactors (40 µL). By continuous infusion of substrate into the bioreactors, the conversion of thymidine monophosphate (dTMP) into its di- (dTDP) and tri-phosphorylated (dTTP) forms was visualized by monitoring their Extracted Ion Chromatogram (EIC) of their [M - H]- ions. Both bioreactors were found to be robust and durable over 60 days (storage at 4 °C in ammonium acetate buffer), after 20 uses and more than 750 min of reaction, making them suitable for routine analysis. Each on-line conversion step was shown rapid (<5 min), efficient (conversion efficiency > 55%), precise and repeatable (CV < 3% for run-to-run analysis). The feasibility of the on-line multi-step conversion from dTMP to dTTP was also proved. In the context of selective antiviral therapy, this proof of concept was then applied to the monitoring of specificity of conversion of two synthesized Acyclic Nucleosides Phosphonates (ANPs), regarding human Thymidylate Kinase (hTMPK) and vaccina virus Thymidylate Kinase (vvTMPK).


Asunto(s)
Reactores Biológicos , Enzimas Inmovilizadas/química , Nucleósido-Fosfato Quinasa/química , Organofosfonatos/química , Timidina Monofosfato/química , Nucleótidos de Timina/química , Humanos , Espectrometría de Masas/métodos , Fosforilación , Prueba de Estudio Conceptual , Virus Vaccinia/enzimología
11.
Oncotarget ; 9(31): 21978-22000, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29774117

RESUMEN

Tumor-tumor distant interactions within one organism are of major clinical relevance determining clinical outcome. To investigate this poorly understood phenomenon, a double human cervical xenograft model in nude mice was developed. A first tumor was induced subcutaneously by injection of human papillomavirus positive cervical carcinoma cells into the mouse lower right flank and 3 weeks later, animals were challenged with the same tumor cell line injected subcutaneously into the upper left flank. These tumors had no direct physical contact and we found no systemic changes induced by the primary tumor affecting the growth of a secondary tumor. However, ablation of the primary tumor by local treatment with cidofovir, a nucleotide analogue with known antiviral and antiproliferative properties, resulted not only in a local antitumor effect but also in a temporary far-reaching effect leading to retarded growth of the challenged tumor. Cidofovir far-reaching effects were linked to a reduced tumor-driven inflammation, to increased anti-tumor immune responses, and could not be enhanced by co-administration with immune stimulating adjuvants. Our findings point to the potential use of cidofovir in novel therapeutic strategies aiming to kill tumor cells as well as to influence the immune system to fight cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA