Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 461(7262): 393-8, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19741609

RESUMEN

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Asunto(s)
Genoma/genética , Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteínas Algáceas/genética , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Humanos , Irlanda , Datos de Secuencia Molecular , Necrosis , Fenotipo , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/inmunología , Solanum tuberosum/inmunología , Inanición
2.
BMC Microbiol ; 9 Suppl 1: S1, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19278549

RESUMEN

All microbes that form beneficial, neutral, or pathogenic associations with hosts face similar challenges. They must physically adhere to and/or gain entry to host tissues; they must avoid, suppress, or tolerate host defenses; they must acquire nutrients from the host and successfully multiply. Microbes that associate with hosts come from many kingdoms of life and include bacteria, fungi, oomycetes, and nematodes. The increasing numbers of full genome sequences from these diverse microbes provide the opportunity to discover common mechanisms by which the microbes forge and maintain intimate associations with host organisms. However, cross-genome analyses have been hindered by lack of a universal vocabulary for describing biological processes involved in the interplay between microbes and their hosts. The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium has been working for three years as an official interest group of the Gene Ontology (GO) Consortium to develop well-defined GO terms that describe many of the biological processes common to diverse plant- and animal-associated microbes. Creating these terms, over 700 at this time, has required a synthesis of diverse points of view from many research communities. The use of these terms in genome annotation will allow cross-genome searches for genes with common function (without demand for sequence similarity) and also improve the interpretation of data from high-throughput microarray and proteomic analyses. This article, and the more focused mini-reviews that make up this supplement to BMC Microbiology, describe the development and use of these terms.


Asunto(s)
Interacciones Huésped-Patógeno , Terminología como Asunto , Vocabulario Controlado , Bacterias/genética , Hongos/genética , Plantas/microbiología , Simbiosis/genética
3.
BMC Microbiol ; 9 Suppl 1: S7, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19278555

RESUMEN

Plant diseases caused by fungi and oomycetes result in significant economic losses every year. Although phylogenetically distant, the infection processes by these organisms share many common features. These include dispersal of an infectious particle, host adhesion, recognition, penetration, invasive growth, and lesion development. Previously, many of these common processes did not have corresponding Gene Ontology (GO) terms. For example, no GO terms existed to describe processes related to the appressorium, an important structure for infection by many fungi and oomycetes. In this mini-review, we identify common features of the pathogenic processes of fungi and oomycetes and create a pathogenesis model using 256 newly developed and 38 extant GO terms, with an emphasis on the appressorium and signal transduction. This set of standardized GO terms provides a solid base to further compare and contrast the molecular underpinnings of fungal and oomycete pathogenesis.


Asunto(s)
Hongos/patogenicidad , Oomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Terminología como Asunto , Interacciones Huésped-Patógeno , Transducción de Señal , Esporas/patogenicidad , Vocabulario Controlado
4.
BMC Microbiol ; 9 Suppl 1: S3, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19278551

RESUMEN

A wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the nutrition and proliferation of the symbiont. When recognized by the host's surveillance machinery, which includes cognate resistance (R) gene products, defense responses are engaged to restrict pathogen proliferation. Effectors from diverse symbionts may be delivered into plant cells via varied mechanisms, including whole organism cellular entry (viruses, some bacteria and fungi), type III and IV secretion (in bacteria), physical injection (nematodes and insects) and protein translocation signal sequences (oomycetes and fungi). This mini-review will summarize both similarities and differences in effectors and effector delivery systems found in diverse plant-associated symbionts as well as how these are described with Plant-Associated Microbe Gene Ontology (PAMGO) terms.


Asunto(s)
Interacciones Huésped-Patógeno , Simbiosis , Terminología como Asunto , Animales , Bacterias/metabolismo , Transporte Biológico , Hongos/metabolismo , Nematodos/metabolismo , Oomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , Vocabulario Controlado
5.
BMC Microbiol ; 9 Suppl 1: S5, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19278553

RESUMEN

Manipulation of programmed cell death (PCD) is central to many host microbe interactions. Both plant and animal cells use PCD as a powerful weapon against biotrophic pathogens, including viruses, which draw their nutrition from living tissue. Thus, diverse biotrophic pathogens have evolved many mechanisms to suppress programmed cell death, and mutualistic and commensal microbes may employ similar mechanisms. Necrotrophic pathogens derive their nutrition from dead tissue, and many produce toxins specifically to trigger programmed cell death in their hosts. Hemibiotrophic pathogens manipulate PCD in a most exquisite way, suppressing PCD during the biotrophic phase and stimulating it during the necrotrophic phase. This mini-review will summarize the mechanisms that have evolved in diverse microbes and hosts for controlling PCD and the Gene Ontology terms developed by the Plant-Associated Microbe Gene Ontology (PAMGO) Consortium for describing those mechanisms.


Asunto(s)
Apoptosis , Interacciones Huésped-Patógeno , Simbiosis , Terminología como Asunto , Bacterias/metabolismo , Bacterias/patogenicidad , Hongos/metabolismo , Hongos/patogenicidad , Oomicetos/metabolismo , Oomicetos/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Virus/metabolismo , Virus/patogenicidad , Vocabulario Controlado
6.
BMC Microbiol ; 9 Suppl 1: S8, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19278556

RESUMEN

BACKGROUND: Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. METHODS: A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. RESULTS: In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site http://amigo.geneontology.org/cgi-bin/amigo/go.cgi. Additionally, the genome of M. oryzae is constantly being refined and updated as new information is incorporated. For the latest GO annotation of Version 6 genome, please visit our website http://scotland.fgl.ncsu.edu/smeng/GoAnnotationMagnaporthegrisea.html. The preliminary GO annotation of Version 6 genome is placed at a local MySql database that is publically queryable via a user-friendly interface Adhoc Query System. CONCLUSION: Our analysis provides comprehensive and robust GO annotations of the M. oryzae genome assemblies that will be solid foundations for further functional interrogation of M. oryzae.


Asunto(s)
Genoma Fúngico , Magnaporthe/genética , Terminología como Asunto , Biología Computacional , Bases de Datos de Proteínas , Proteínas Fúngicas/genética , Oryza/microbiología , Alineación de Secuencia , Análisis de Secuencia de Proteína , Vocabulario Controlado
7.
Mol Plant Microbe Interact ; 20(7): 781-93, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17601166

RESUMEN

Six unique expressed sequence tag (EST) libraries were generated from four developmental stages of Phytophthora sojae P6497. RNA was extracted from mycelia, swimming zoospores, germinating cysts, and soybean (Glycine max (L.) Merr.) cv. Harosoy tissues heavily infected with P. sojae. Three libraries were created from mycelia growing on defined medium, complex medium, and nutrient-limited medium. The 26,943 high-quality sequences obtained clustered into 7,863 unigenes composed of 2,845 contigs and 5,018 singletons. The total number of P. sojae unigenes matching sequences in the genome assembly was 7,412 (94%). Of these unigenes, 7,088 (90%) matched gene models predicted from the P. sojae sequence assembly, but only 2,047 (26%) matched P. ramorum gene models. Analysis of EST frequency from different growth conditions and morphological stages revealed genes that were specific to or highly represented in particular growth conditions and life stages. Additionally, our results indicate that, during infection, the pathogen derives most of its carbon and energy via glycolysis of sugars in the plant. Sequences identified with putative roles in pathogenesis included avirulence homologs possessing the RxLR motif, elicitins, and hydrolytic enzymes. This large collection of P. sojae ESTs will serve as a valuable public genomic resource.


Asunto(s)
Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Genes Fúngicos , Phytophthora/genética , Análisis por Conglomerados , Biblioteca de Genes , Datos de Secuencia Molecular , Phytophthora/crecimiento & desarrollo , Análisis de Secuencia de ADN , Glycine max/microbiología
8.
BMC Microbiol ; 5: 46, 2005 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16076392

RESUMEN

BACKGROUND: The oomycete Saprolegnia parasitica is one of the most economically important fish pathogens. There is a dramatic recrudescence of Saprolegnia infections in aquaculture since the use of the toxic organic dye malachite green was banned in 2002. Little is known about the molecular mechanisms underlying pathogenicity in S. parasitica and other animal pathogenic oomycetes. In this study we used a genomics approach to gain a first insight into the transcriptome of S. parasitica. RESULTS: We generated 1510 expressed sequence tags (ESTs) from a mycelial cDNA library of S. parasitica. A total of 1279 consensus sequences corresponding to 525944 base pairs were assembled. About half of the unigenes showed similarities to known protein sequences or motifs. The S. parasitica sequences tended to be relatively divergent from Phytophthora sequences. Based on the sequence alignments of 18 conserved proteins, the average amino acid identity between S. parasitica and three Phytophthora species was 77% compared to 93% within Phytophthora. Several S. parasitica cDNAs, such as those with similarity to fungal type I cellulose binding domain proteins, PAN/Apple module proteins, glycosyl hydrolases, proteases, as well as serine and cysteine protease inhibitors, were predicted to encode secreted proteins that could function in virulence. Some of these cDNAs were more similar to fungal proteins than to other eukaryotic proteins confirming that oomycetes and fungi share some virulence components despite their evolutionary distance CONCLUSION: We provide a first glimpse into the gene content of S. parasitica, a reemerging oomycete fish pathogen. These resources will greatly accelerate research on this important pathogen. The data is available online through the Oomycete Genomics Database.


Asunto(s)
Etiquetas de Secuencia Expresada , Enfermedades de los Peces/microbiología , Saprolegnia/genética , Animales , Sitios de Unión , Celulosa/metabolismo , Secuencia de Consenso , ADN Complementario/genética , Peces , Biblioteca de Genes , Filogenia , ARN Mensajero/genética , Saprolegnia/clasificación , Saprolegnia/patogenicidad , Virulencia
9.
Front Microbiol ; 5: 528, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25346727

RESUMEN

Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

10.
Front Microbiol ; 5: 634, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25520705

RESUMEN

Methane (CH4) is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing "gold standards" for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/).

12.
Microbiol Mol Biol Rev ; 74(4): 479-503, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21119014

RESUMEN

Microbes form intimate relationships with hosts (symbioses) that range from mutualism to parasitism. Common microbial mechanisms involved in a successful host association include adhesion, entry of the microbe or its effector proteins into the host cell, mitigation of host defenses, and nutrient acquisition. Genes associated with these microbial mechanisms are known for a broad range of symbioses, revealing both divergent and convergent strategies. Effective comparisons among these symbioses, however, are hampered by inconsistent descriptive terms in the literature for functionally similar genes. Bioinformatic approaches that use homology-based tools are limited to identifying functionally similar genes based on similarities in their sequences. An effective solution to these limitations is provided by the Gene Ontology (GO), which provides a standardized language to describe gene products from all organisms. The GO comprises three ontologies that enable one to describe the molecular function(s) of gene products, the biological processes to which they contribute, and their cellular locations. Beginning in 2004, the Plant-Associated Microbe Gene Ontology (PAMGO) interest group collaborated with the GO consortium to extend the GO to accommodate terms for describing gene products associated with microbe-host interactions. Currently, over 900 terms that describe biological processes common to diverse plant- and animal-associated microbes are incorporated into the GO database. Here we review some unifying themes common to diverse host-microbe associations and illustrate how the new GO terms facilitate a standardized description of the gene products involved. We also highlight areas where new terms need to be developed, an ongoing process that should involve the whole community.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biología Computacional/métodos , Hongos/fisiología , Plantas/microbiología , Simbiosis , Animales , Bacterias/genética , Bacterias/metabolismo , Adhesión Celular , Hongos/genética , Hongos/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Plantas/inmunología , Transporte de Proteínas , Simbiosis/genética , Simbiosis/inmunología , Factores de Virulencia
13.
Science ; 330(6010): 1549-1551, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148394

RESUMEN

Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.


Asunto(s)
Arabidopsis/parasitología , Evolución Molecular , Genoma , Oomicetos/crecimiento & desarrollo , Oomicetos/genética , Enfermedades de las Plantas/parasitología , Adaptación Fisiológica , Secuencia de Aminoácidos , Enzimas/genética , Dosificación de Gen , Genes , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Oomicetos/patogenicidad , Oomicetos/fisiología , Phytophthora/genética , Polimorfismo de Nucleótido Simple , Proteínas/genética , Selección Genética , Análisis de Secuencia de ADN , Esporas/fisiología , Sintenía , Factores de Virulencia/genética
14.
Trends Microbiol ; 17(7): 320-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19577927

RESUMEN

Filamentous microbes that form highly developed symbiotic associations (ranging from pathogenesis to mutualism) with their hosts include fungi, oomycetes and actinomycete bacteria. These organisms share many common features in growth, development and infection and have evolved similar strategies for neutralizing host defense responses to establish symbioses. Recent advances in sequencing technologies have led to a remarkable increase in the number of sequenced genomes of filamentous organisms. Analysis of the available genomes has provided useful information about genes that might be important for host infection and colonization. However, because many functional similarities among these organisms have arisen by convergent evolution, sequence-based genomic comparisons will miss many genes that are functionally analogous. In the absence of sequence similarity, annotating genes with standardized terms from the Gene Ontology (GO) can facilitate functional comparisons. Here, we review common strategies employed by filamentous organisms during colonization of their hosts, with reference to GO terms that best describe the processes involved.


Asunto(s)
Biología Computacional/métodos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Vocabulario Controlado , Actinomycetales/genética , Hongos/genética , Oomicetos/genética
15.
Fungal Genet Biol ; 43(1): 20-33, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16380277

RESUMEN

Phytophthora infestans is a devastating phytopathogenic oomycete that causes late blight on tomato and potato. Recent genome sequencing efforts of P. infestans and other Phytophthora species are generating vast amounts of sequence data providing opportunities to unlock the complex nature of pathogenesis. However, accurate annotation of Phytophthora genomes will be a significant challenge. Most of the information about gene structure in these species was gathered from a handful of genes resulting in significant limitations for development of ab initio gene-calling programs. In this study, we collected a total of 150 bioinformatically determined near full-length cDNA (FLcDNA) sequences of P. infestans that were predicted to contain full open reading frame sequences. We performed detailed computational analyses of these FLcDNA sequences to obtain a snapshot of P. infestans gene structure, gauge the degree of sequence conservation between P. infestans genes and those of Phytophthora sojae and Phytophthora ramorum, and identify patterns of gene conservation between P. infestans and various eukaryotes, particularly fungi, for which genome-wide translated protein sequences are available. These analyses helped us to define the structural characteristics of P. infestans genes using a validated data set. We also determined the degree of sequence conservation within the genus Phytophthora and identified a set of fast evolving genes. Finally, we identified a set of genes that are shared between Phytophthora and fungal phytopathogens but absent in animal fungal pathogens. These results confirm that plant pathogenic oomycetes and fungi share virulence components, and suggest that eukaryotic microbial pathogens that share similar lifestyles also share a similar set of genes independently of their phylogenetic relatedness.


Asunto(s)
ADN Complementario/genética , ADN de Hongos/genética , Phytophthora/genética , Enfermedades de las Plantas , Composición de Base , Procesamiento Automatizado de Datos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN , Solanaceae/microbiología
16.
Plant Cell ; 18(7): 1766-77, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16766692

RESUMEN

The cellulose binding elicitor lectin (CBEL) from Phytophthora parasitica nicotianae contains two cellulose binding domains (CBDs) belonging to the Carbohydrate Binding Module1 family, which is found almost exclusively in fungi. The mechanism by which CBEL is perceived by the host plant remains unknown. The role of CBDs in eliciting activity was investigated using modified versions of the protein produced in Escherichia coli or synthesized in planta through the potato virus X expression system. Recombinant CBEL produced by E. coli elicited necrotic lesions and defense gene expression when injected into tobacco (Nicotiana tabacum) leaves. CBEL production in planta induced necrosis. Site-directed mutagenesis on aromatic amino acid residues located within the CBDs as well as leaf infiltration assays using mutated and truncated recombinant proteins confirmed the importance of intact CBDs to induce defense responses. Tobacco and Arabidopsis thaliana leaf infiltration assays using synthetic peptides showed that the CBDs of CBEL are essential and sufficient to stimulate defense responses. Moreover, CBEL elicits a transient variation of cytosolic calcium levels in tobacco cells but not in protoplasts. These results define CBDs as a novel class of molecular patterns in oomycetes that are targeted by the innate immune system of plants and might act through interaction with the cell wall.


Asunto(s)
Proteínas Algáceas/química , Pared Celular/química , Celulosa/metabolismo , Lectinas/química , Phytophthora/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Lectinas/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Phytophthora/patogenicidad , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Nicotiana/anatomía & histología , Nicotiana/metabolismo , Nicotiana/microbiología
17.
Mol Plant Pathol ; 7(6): 499-510, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20507464

RESUMEN

SUMMARY We adapted and optimized the use of the Agrobacterium tumefaciens binary PVX expression system (PVX agroinfection) to screen Solanum plants for response to pathogen elicitors and applied the assay to identify a total of 11 clones of Solanum huancabambense and Solanum microdontum, out of 31 species tested, that respond to the elicitins INF1, INF2A and INF2B of Phytophthora infestans. Prior to this study, response to INF elicitins was only known in Nicotiana spp. within the Solanaceae. The identified S. huancabambense and S. microdontum clones also exhibited hypersensitivity-like cell death following infiltration with purified recombinant INF1, INF2A and INF2B, thereby validating the screening protocol. Comparison of INF elicitin activity revealed that Nicotiana plants responded to significantly lower concentrations than Solanum, suggesting variable levels of sensitivity to INF elicitins. We exploited natural variation in response to INF elicitins in the identified Solanum accessions to evaluate the relationship between INF recognition and late blight resistance. Interestingly, several INF-responsive Solanum plants were susceptible to P. infestans. Also, an S. microdontum xSolanum tuberosum (potato) population that segregates for INF response was generated but failed to identify a measurable contribution of INF response to resistance. These results suggest that in Solanum, INF elicitins are recognized as general elicitors and do not have a measurable contribution to disease resistance.

18.
Science ; 313(5791): 1261-6, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16946064

RESUMEN

Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.


Asunto(s)
Evolución Biológica , ADN de Algas/genética , Genoma , Phytophthora/genética , Phytophthora/patogenicidad , Proteínas Algáceas/genética , Proteínas Algáceas/fisiología , Genes , Hidrolasas/genética , Hidrolasas/metabolismo , Fotosíntesis/genética , Filogenia , Mapeo Físico de Cromosoma , Phytophthora/clasificación , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Simbiosis , Toxinas Biológicas/genética
19.
Mol Biol Evol ; 22(3): 659-72, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15548752

RESUMEN

Phytophthora infestans, the organism responsible for the Irish famine, causes late blight, a re-emerging disease of potato and tomato. Little is known about the molecular evolution of P. infestans genes. To identify candidate effector genes (virulence or avirulence genes) that may have co-evolved with the host, we mined expressed sequence tag (EST) data from infection stages of P. infestans for secreted and potentially polymorphic genes. This led to the identification of scr74, a gene that encodes a predicted 74-amino acid secreted cysteine-rich protein with similarity to the Phytophthora cactorum phytotoxin PcF. The expression of scr74 was upregulated approximately 60-fold 2 to 4 days after inoculation of tomato and was also significantly induced during early stages of colonization of potato. The scr74 gene was found to belong to a highly polymorphic gene family within P. infestans with 21 different sequences identified. Using the approximate and maximum likelihood (ML) methods, we found that diversifying selection likely caused the extensive polymorphism observed within the scr74 gene family. Pairwise comparisons of 17 scr74 sequences revealed elevated ratios of nonsynonymous to synonymous nucleotide-substitution rates, particularly in the mature region of the proteins. Using ML, all 21 polymorphic amino acid sites were identified to be under diversifying selection. Of these 21 amino acids, 19 are located in the mature protein region, suggesting that selection may have acted on the functional portions of the proteins. Further investigation of gene copy number and organization revealed that the scr74 gene family comprises at least three copies located in a region of no more than 300 kb of the P. infestans genome. We found evidence that recombination contributed to sequence divergence within at least one gene locus. These results led us to propose an evolutionary model that involves gene duplication and recombination, followed by functional divergence of scr74 genes. This study provides support for using diversifying selection as a criterion for identifying candidate effector genes from sequence databases.


Asunto(s)
Proteínas Algáceas/genética , Phytophthora/genética , Mutación Puntual , Polimorfismo de Nucleótido Simple , Selección Genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular
20.
J Biol Chem ; 279(25): 26370-7, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15096512

RESUMEN

The oomycetes form one of several lineages within the eukaryotes that independently evolved a parasitic lifestyle and consequently are thought to have developed alternative mechanisms of pathogenicity. The oomycete Phytophthora infestans causes late blight, a ravaging disease of potato and tomato. Little is known about processes associated with P. infestans pathogenesis, particularly the suppression of host defense responses. We describe and functionally characterize an extracellular protease inhibitor, EPI1, from P. infestans. EPI1 contains two domains with significant similarity to the Kazal family of serine protease inhibitors. Database searches suggested that Kazal-like proteins are mainly restricted to animals and apicomplexan parasites but appear to be widespread and diverse in the oomycetes. Recombinant EPI1 specifically inhibited subtilisin A among major serine proteases and inhibited and interacted with the pathogenesis-related P69B subtilisin-like serine protease of tomato in intercellular fluids. The epi1 and P69B genes were coordinately expressed and up-regulated during infection of tomato by P. infestans. Inhibition of tomato proteases by EPI1 could form a novel type of defense-counterdefense mechanism between plants and microbial pathogens. In addition, this study points to a common virulence strategy between the oomycete plant pathogen P. infestans and several mammalian parasites, such as the apicomplexan Toxoplasma gondii.


Asunto(s)
Endopeptidasas/metabolismo , Phytophthora/enzimología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Solanum lycopersicum/microbiología , Secuencia de Aminoácidos , Northern Blotting , Western Blotting , Bases de Datos como Asunto , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Espectrometría de Masas , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina Endopeptidasas/química , Inhibidores de Serina Proteinasa/metabolismo , Subtilisinas/química , Factores de Tiempo , Inhibidor de Tripsina Pancreática de Kazal/química , Regulación hacia Arriba , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA