Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7843): 597-602, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361818

RESUMEN

Isoprenoids are vital for all organisms, in which they maintain membrane stability and support core functions such as respiration1. IspH, an enzyme in the methyl erythritol phosphate pathway of isoprenoid synthesis, is essential for Gram-negative bacteria, mycobacteria and apicomplexans2,3. Its substrate, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), is not produced in metazoans, and in humans and other primates it activates cytotoxic Vγ9Vδ2 T cells at extremely low concentrations4-6. Here we describe a class of IspH inhibitors and refine their potency to nanomolar levels through structure-guided analogue design. After modification of these compounds into prodrugs for delivery into bacteria, we show that they kill clinical isolates of several multidrug-resistant bacteria-including those from the genera Acinetobacter, Pseudomonas, Klebsiella, Enterobacter, Vibrio, Shigella, Salmonella, Yersinia, Mycobacterium and Bacillus-yet are relatively non-toxic to mammalian cells. Proteomic analysis reveals that bacteria treated with these prodrugs resemble those after conditional IspH knockdown. Notably, these prodrugs also induce the expansion and activation of human Vγ9Vδ2 T cells in a humanized mouse model of bacterial infection. The prodrugs we describe here synergize the direct killing of bacteria with a simultaneous rapid immune response by cytotoxic γδ T cells, which may limit the increase of antibiotic-resistant bacterial populations.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/inmunología , Activación de Linfocitos/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Farmacorresistencia Microbiana , Resistencia a Múltiples Medicamentos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Semivida , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Profármacos/farmacocinética , Profármacos/farmacología , Especificidad por Sustrato , Porcinos/sangre , Linfocitos T Citotóxicos/inmunología
2.
Antimicrob Agents Chemother ; 67(9): e0057923, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37650617

RESUMEN

Taniborbactam and xeruborbactam are dual serine-/metallo-beta-lactamase inhibitors (BLIs) based on a cyclic boronic acid pharmacophore that undergo clinical development. Recent report demonstrated that New Delhi metallo-beta-lactamase (NDM)-9 (differs from NDM-1 by a single amino acid substitution, E152K, evolved to overcome Zn (II) deprivation) is resistant to inhibition by taniborbactam constituting pre-existing taniborbactam resistance mechanism. Using microbiological and biochemical experiments, we show that xeruborbactam is capable of inhibiting NDM-9 and propose the structural basis for differences between two BLIs.


Asunto(s)
Ácidos Borínicos , Sustitución de Aminoácidos , Ácidos Borónicos/farmacología , Resistencia betalactámica/genética , Inhibidores de beta-Lactamasas/farmacología
3.
Antimicrob Agents Chemother ; 67(11): e0044023, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37800963

RESUMEN

Recently, several ß-lactam (BL)/ß-lactamase inhibitor (BLI) combinations have entered clinical testing or have been marketed for use, but limited direct comparative studies of their in vitro activity exist. Xeruborbactam (XER, also known as QPX7728), which is undergoing clinical development, is a cyclic boronate BLI with potent inhibitory activity against serine (serine ß-lactamase) and metallo-ß-lactamases (MBLs). The objectives of this study were (i) to compare the potency and spectrum of ß-lactamase inhibition by various BLIs in biochemical assays using purified ß-lactamases and in microbiological assays using the panel of laboratory strains expressing diverse serine and metallo-ß-lactamases and (ii) to compare the in vitro potency of XER in combination with multiple ß-lactam antibiotics to that of other BL/BLI combinations in head-to-head testing against recent isolates of carbapenem-resistant Enterobacterales (CRE). Minimal inhibitory concentrations (MICs) of XER combinations were tested with XER at fixed 4 or 8 µg/mL, and MIC testing was conducted in a blinded fashion using Clinical and Laboratory Standards Institute reference methods. Xeruborbactam and taniborbactam (TAN) were the only BLIs that inhibited clinically important MBLs. The spectrum of activity of xeruborbactam included several MBLs identified in Enterobacterales, e.g., and various IMP enzymes and NDM-9 that were not inhibited by taniborbactam. Xeruborbactam potency against the majority of purified ß-lactamases was the highest in comparison with other BLIs. Meropenem-xeruborbactam (MEM-XER, fixed 8 µg/mL) was the most potent combination against MBL-negative CRE with MIC90 values of 0.125 µg/mL. MEM-XER and cefepime-taniborbactam (FEP-TAN) were the only BL/BLIs with activity against MBL-producing CREs; with MEM-XER (MIC90 of 1 µg/mL) being at least 16-fold more potent than FEP-TAN (MIC90 of 16 µg/mL). MEM-XER MIC values were ≤8 µg/mL for >90% of CRE, including both MBL-negative and MBL-positive isolates, with FEP-TAN MIC of >8 µg/mL. Xeruborbactam also significantly enhanced potency of other ß-lactam antibiotics, including cefepime, ceftolozane, ceftriaxone, aztreonam, piperacillin, and ertapenem, against clinical isolates of Enterobacterales that carried various class A, class C, and class D extended-spectrum ß-lactamases and carbapenem-resistant Enterobacterales, including metallo-ß-lactamase-producing isolates. These results strongly support further clinical development of xeruborbactam combinations.


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Antibióticos Betalactámicos , Cefepima , Lactamas , beta-Lactamasas , Serina , Pruebas de Sensibilidad Microbiana , Compuestos de Azabiciclo/farmacología
4.
J Chem Inf Model ; 62(23): 5896-5906, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456533

RESUMEN

We present a graph-convolutional neural network (GCNN)-based method for learning and prediction of statistical torsional profiles (STP) in small organic molecules based on the experimental X-ray structure data. A specialized GCNN torsion profile model is trained using the structures in the Crystallography Open Database (COD). The GCNN-STP model captures torsional preferences over a wide range of torsion rotor chemotypes and correctly predicts a variety of effects from the vicinal atoms and moieties. GCNN-STP statistical profiles also show good agreement with quantum chemically (DFT) calculated torsion energy profiles. Furthermore, we demonstrate the application of the GCNN-STP statistical profiles for conformer generation. A web server that allows interactive profile prediction and viewing is made freely available at https://www.molsoft.com/tortool.html.


Asunto(s)
Redes Neurales de la Computación , Cristalografía , Bases de Datos Factuales
5.
Bioorg Med Chem ; 62: 116722, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35358864

RESUMEN

Early efforts to broaden the spectrum and potency of cyclic boronic acid ß-lactamase inhibitor vaborbactam included a series of 7-membered ring boronates. Exploration of stereoisomers and incorporation of heteroatoms allowed identification of the all-carbon cyclic boronate with substituents trans as the preferred core structure, showing inhibition of Class A and C enzymes. Crystal structures of one analog bound to important ß-lactamase enzymes were obtained. When isolated under acidic conditions, these compounds spontaneously formed a neutral cyclic anhydride (intramolecular prodrug) which was shown to have much-improved oral bioavailability (52-69%) compared to the ring-opened carboxylate salt (9%).


Asunto(s)
Profármacos , Inhibidores de beta-Lactamasas , Antibacterianos/química , Antibacterianos/farmacología , Disponibilidad Biológica , Profármacos/farmacología , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
7.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554699

RESUMEN

The HIV vaccine field now recognizes the potential importance of generating polyfunctional antibodies (Abs). The only clinical HIV vaccine trial to date to show significant efficacy (RV144) found that reduced infection rates correlated with the level of nonneutralizing Abs specific for the V2 region of the envelope glycoprotein. We have conducted a comprehensive preclinical reverse vaccinology-based vaccine program that has included the design and production and testing of numerous scaffolded V2 region immunogens. The most immunogenic vaccine regimen in nonhuman primates among those studied as part of this program consisted of a cocktail of three immunogens presenting V2 from different viruses and clades in the context of different scaffolds. Presently we demonstrate that the V2-specific Ab response from this regimen was highly durable and functionally diverse for the duration of the study (25 weeks after the final immunization). The total IgG binding response at this late time point exhibited only an ∼5× reduction in potency. Three immunizations appeared essential for the elicitation of a strong Ab-dependent cellular cytotoxicity (ADCC) response for all animals, as opposed to the Ab-dependent cellular phagocytosis (ADCP) and virus capture responses, which were comparably potent after only 2 immunizations. All functionalities measured were highly durable through the study period. Therefore, testing this vaccine candidate for its protective capacity is warranted.IMPORTANCE The only HIV vaccine trial for which protective efficacy was detected correlated this efficacy with V2-specific Abs that were effectively nonneutralizing. This result has fueled a decade of HIV vaccine research focused on designing an HIV vaccine capable of eliciting V2-focused, polyfunctional Abs that effectively bind HIV and trigger various leukocytes to kill the virus and restrict viral spread. From the numerous vaccine candidates designed and tested as part of our V2-focused preclinical vaccine program, we have identified immunogens and a vaccine regimen that induces a highly durable and polyfunctional V2-focused Ab response in rhesus macaques, described herein.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , VIH-1/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Macaca mulatta/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Formación de Anticuerpos , Modelos Animales de Enfermedad , Antígenos VIH/genética , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Inmunización , Inmunogenicidad Vacunal/inmunología , Proteínas del Envoltorio Viral/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-32152086

RESUMEN

QPX7728 is a new ultrabroad-spectrum inhibitor of serine and metallo-beta-lactamases (MBLs) from a class of cyclic boronates that gave rise to vaborbactam. The spectrum and mechanism of beta-lactamase inhibition by QPX7728 were assessed using purified enzymes from all molecular classes. QPX7728 inhibits class A extended-spectrum beta-lactamases (ESBLs) (50% inhibitory concentration [IC50] range, 1 to 3 nM) and carbapenemases such as KPC (IC50, 2.9 ± 0.4 nM) as well as class C P99 (IC50 of 22 ± 8 nM) with a potency that is comparable to or higher than recently FDA-approved beta-lactamase inhibitors (BLIs) avibactam, relebactam, and vaborbactam. Unlike those other BLIs, QPX7728 is also a potent inhibitor of class D carbapenemases such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/58, IC50 range, 1 to 2 nM) as well as MBLs such as NDM-1 (IC50, 55 ± 25 nM), VIM-1 (IC50, 14 ± 4 nM), and IMP-1 (IC50, 610 ± 70 nM). Inhibition of serine enzymes by QPX7728 is associated with progressive inactivation with a high-efficiency k2/K ranging from 6.3 × 104 (for P99) to 9.9 × 105 M-1 s-1 (for OXA-23). This inhibition is reversible with variable stability of the QPX7728-beta-lactamase complexes with target residence time ranging from minutes to several hours: 5 to 20 min for OXA carbapenemases from A. baumannii, ∼50 min for OXA-48, and 2 to 3 h for KPC and CTX-M-15. QPX7728 inhibited all tested serine enzymes at a 1:1 molar ratio. Metallo-beta-lactamases NDM, VIM, and IMP were inhibited by a competitive mechanism with fast-on-fast-off kinetics, with Ki s of 7.5 ± 2.1 nM, 32 ± 14 nM, and 240 ± 30 nM for VIM-1, NDM-1, and IMP-1, respectively. QPX7728's ultrabroad spectrum of BLI inhibition combined with its high potency enables combinations with multiple different beta-lactam antibiotics.


Asunto(s)
Serina , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Monobactamas , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética
9.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32778546

RESUMEN

Class A ß-lactamases are a major cause of ß-lactam resistance in Gram-negative bacteria. The recently FDA-approved cyclic boronate vaborbactam is a reversible covalent inhibitor of class A ß-lactamases, including CTX-M extended-spectrum ß-lactamase and KPC carbapenemase, both frequently observed in the clinic. Intriguingly, vaborbactam displayed different binding kinetics and cell-based activity for these two enzymes, despite their similarity. A 1.0-Å crystal structure of CTX-M-14 demonstrated that two catalytic residues, K73 and E166, are positively charged and neutral, respectively. Meanwhile, a 1.25-Å crystal structure of KPC-2 revealed a more compact binding mode of vaborbactam versus CTX-M-14, as well as alternative conformations of W105. Together with kinetic analysis of W105 mutants, the structures demonstrate the influence of this residue and the unusual conformation of the ß3 strand on the inactivation rate, as well as the stability of the reversible covalent bond with S70. Furthermore, studies of KPC-2 S130G mutant shed light on the different impacts of S130 in the binding of vaborbactam versus avibactam, another recently approved ß-lactamase inhibitor. Taken together, these new data provide valuable insights into the inhibition mechanism of vaborbactam and future development of cyclic boronate inhibitors.


Asunto(s)
Antibacterianos , beta-Lactamasas , Antibacterianos/farmacología , Ácidos Borónicos , Cinética , Inhibidores de beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
10.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32868334

RESUMEN

QPX7728 is a recently discovered ultra-broad-spectrum beta-lactamase inhibitor (BLI) with potent inhibition of key serine and metallo-beta-lactamases. QPX7728 enhances the potency of many beta-lactams, including carbapenems, in beta-lactamase-producing Gram-negative bacteria, including Acinetobacter spp. The potency of meropenem alone and in combination with QPX7728 (1 to 16 µg/ml) was tested against 275 clinical isolates of Acinetobacter baumannii (carbapenem-resistant A. baumannii [CRAB]) collected worldwide that were highly resistant to carbapenems (MIC50 and MIC90 for meropenem, 64 and >64 µg/ml). Addition of QPX7728 resulted in a marked concentration-dependent increase in meropenem potency, with the MIC90 of meropenem alone decreasing from >64 µg/ml to 8 and 4 µg/ml when tested with fixed concentrations of QPX7728 at 4 and 8 µg/ml, respectively. In order to identify the mechanisms that modulate the meropenem-QPX7728 MIC, the whole-genome sequences were determined for 135 isolates with a wide distribution of meropenem-QPX7728 MICs. This panel of strains included 116 strains producing OXA carbapenemases (71 OXA-23, 16 OXA-72, 16 OXA-24, 9 OXA-58, and 4 OXA-239), 5 strains producing NDM-1, one KPC-producing strain, and 13 strains that did not carry any known carbapenemases but were resistant to meropenem (MIC ≥ 4 µg/ml). Our analysis indicated that mutated PBP3 (with mutations localized in the vicinity of the substrate/inhibitor binding site) is the main factor that contributes to the reduction of meropenem-QPX7728 potency. Still, >90% of isolates that carried PBP3 mutations remained susceptible to ≤8 µg/ml of meropenem when tested with a fixed 4 to 8 µg/ml of QPX7728. In the absence of PBP3 mutations, the MICs of meropenem tested in combination with 4 to 8 µg/ml of QPX7728 did not exceed 8 µg/ml. In the presence of both PBP3 and efflux mutations, 84.6% of isolates were susceptible to ≤8 µg/ml of meropenem with 4 or 8 µg/ml of QPX7728. The combination of QPX7728 with meropenem against CRAB isolates with multiple resistance mechanisms has an attractive microbiological profile.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-32229489

RESUMEN

QPX7728 is an ultrabroad-spectrum boronic acid beta-lactamase inhibitor, with potent inhibition of key serine and metallo-beta-lactamases being observed in biochemical assays. Microbiological studies using characterized strains were used to provide a comprehensive characterization of the spectrum of beta-lactamase inhibition by QPX7728. The MICs of multiple antibiotics administered intravenously only (ceftazidime, piperacillin, cefepime, ceftolozane, and meropenem) and orally bioavailable antibiotics (ceftibuten, cefpodoxime, tebipenem) alone and in combination with QPX7728 (4 µg/ml), as well as comparator agents, were determined against panels of laboratory strains of Pseudomonas aeruginosa and Klebsiella pneumoniae expressing over 55 diverse serine and metallo-beta-lactamases. QPX7728 significantly enhanced the potency of antibiotics against strains expressing class A extended-spectrum beta-lactamases (CTX-M, SHV, TEM, VEB, PER) and carbapenemases (KPC, SME, NMC-A, BKC-1), consistent with the beta-lactamase inhibition demonstrated in biochemical assays. It also inhibited both plasmidic (CMY, FOX, MIR, DHA) and chromosomally encoded (P99, PDC, ADC) class C beta-lactamases and class D enzymes, including carbapenemases, such as OXA-48 from Enterobacteriaceae and OXA enzymes from Acinetobacter baumannii (OXA-23/24/72/58). QPX7728 is also a potent inhibitor of many class B metallo-beta-lactamases (NDM, VIM, CcrA, IMP, and GIM but not SPM or L1). Addition of QPX7728 (4 µg/ml) reduced the MICs for a majority of the strains to the level observed for the control with the vector alone, indicative of complete beta-lactamase inhibition. The ultrabroad-spectrum beta-lactamase inhibition profile makes QPX7728 a viable candidate for further development.


Asunto(s)
Antibacterianos , Inhibidores de beta-Lactamasas , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Monobactamas , Serina , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética
12.
J Comput Aided Mol Des ; 33(12): 1057-1069, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31598897

RESUMEN

Macrocycles represent a potentially vast extension of drug chemical space still largely untapped by synthetic compounds. Sampling of flexible rings is incorporated in the ICM-dock protocol. We tested the ability of ICM-dock to reproduce macrocyclic ligand-protein receptor complexes, first in a large retrospective benchmark (246 complexes), and next, in context of the D3R Grand Challenge 4 (GC4), where we modeled bound complexes and predicted activities for a series of macrocyclic BACE inhibitors. Sub-angstrom accuracy was achieved in ligand pose prediction both in cross-docking (D3R Challenge Stage 1A) and cognate (Stage 1B) setup. Stage 1B submission was top ranked by mean and average RMSDs, even though no ligand knowledge was used in our simulations on this Stage. Furthermore, we demonstrate successful receptor conformational selection in Stage 1A, aided by the enhanced '4D' multiple receptor conformation docking protocol with optimized scoring offsets. In the activity 3D QSAR modeling, predictivity of the BACE pKd model was modest, while for the second target (Cathepsin-S), leading performance was achieved. Difference in activity prediction performance between the targets is likely explained by the amount of available and relevant training data.


Asunto(s)
Diseño de Fármacos , Compuestos Macrocíclicos/química , Proteínas/química , Termodinámica , Benchmarking , Sitios de Unión/efectos de los fármacos , Diseño Asistido por Computadora , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Ligandos , Compuestos Macrocíclicos/uso terapéutico , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa
13.
J Comput Aided Mol Des ; 33(1): 35-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30094533

RESUMEN

In context of D3R Grand Challenge 3 we have investigated several ligand activity prediction protocols that combined elements of a physics-based energy function (ICM VLS score) and the knowledge-based Atomic Property Field 3D QSAR approach. Activity prediction models utilized poses produced by ICM-Dock with ligand bias and 4D receptor conformational ensembles (LigBEnD). Hybrid APF/P (APF/Physics) models were superior to pure physics- or knowledge-based models in our preliminary tests using rigorous three-fold clustered cross-validation and later proved successful in the blind prediction for D3R GC3 sets, consistently performing well across four different targets. The results demonstrate that knowledge-based and physics-based inputs into the machine-learning activity model can be non-redundant and synergistic.


Asunto(s)
Catepsinas/química , Simulación del Acoplamiento Molecular/métodos , Sitios de Unión , Diseño Asistido por Computadora , Cristalografía por Rayos X , Bases de Datos de Proteínas , Diseño de Fármacos , Ligandos , Aprendizaje Automático , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Termodinámica
14.
J Virol ; 91(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615206

RESUMEN

We recently showed that mutations in the HIV-1 envelope (Env) destabilize the V3 loop, rendering neutralization-resistant viruses sensitive to V3-directed monoclonal antibodies (MAbs). Here, we investigated the propagation of this effect on other Env epitopes, with special emphasis on V2 loop exposure. Wild-type JR-FL and 19 mutant JR-FL pseudoviruses were tested for neutralization sensitivity to 21 MAbs specific for epitopes in V2, the CD4 binding site (CD4bs), and the CD4-induced (CD4i) region. Certain glycan mutants, mutations in the gp120 hydrophobic core, and mutations in residues involved in intraprotomer interactions exposed epitopes in the V2i region (which overlies the α4ß7 integrin binding site) and the V3 crown, suggesting general destabilization of the distal region of the trimer apex. In contrast, other glycan mutants, mutations affecting interprotomer interactions, and mutations affecting the CD4bs exposed V3 but not V2i epitopes. These data indicate for the first time that V3 can move independently of V2, with V3 pivoting out from its "tucked" position in the trimer while apparently leaving the V2 apex intact. Notably, none of the mutations exposed V2 epitopes without also exposing V3, suggesting that movement of V2 releases V3. Most mutations increased sensitivity to CD4bs-directed MAbs without exposure of the CD4i epitope, implying these mutations facilitate the trimers' maintenance of an intermediate energy state between open and closed conformations. Taken together, these data indicate that several transient Env epitopes can be rendered more accessible to antibodies (Abs) via specific mutations, and this may facilitate the design of V1V2-targeting immunogens.IMPORTANCE Many epitopes of the HIV envelope (Env) spike are relatively inaccessible to antibodies (Abs) compared to their exposure in the open Env conformation induced by receptor binding. However, the reduced infection rate that resulted from the vaccine used in the RV144 HIV-1 vaccine trial was correlated with the elicitation of V2- and V3-directed antibodies. Previously, we identified various mechanisms responsible for destabilizing the V3 loop; here, we determined, via mutation of numerous Env residues, which of these elements maintain the V1V2 loop in an inaccessible state and which expose V1V2 and/or V3 epitopes. Notably, our data indicate that V3 can move independently of V2, but none of the mutations studied expose V2 epitopes without also exposing V3. Additionally, V1V2 can be rendered more accessible to Abs via specific mutations, facilitating the development of engineered V2 immunogens.


Asunto(s)
Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/virología , VIH-1 , Humanos , Pruebas de Neutralización , Unión Proteica
15.
J Comput Aided Mol Des ; 32(1): 187-198, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887659

RESUMEN

Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores Citoplasmáticos y Nucleares/metabolismo , Algoritmos , Sitios de Unión , Diseño Asistido por Computadora , Bases de Datos de Proteínas , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Receptores Citoplasmáticos y Nucleares/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Programas Informáticos
16.
Chimia (Aarau) ; 70(10): 704-708, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27779928

RESUMEN

Widespread pyrethroid resistance has caused an urgent need to develop new insecticides for control of the malaria mosquito, Anopheles gambiae. Insecticide discovery efforts were directed towards the construction of bivalent inhibitors that occupy both the peripheral and catalytic sites of the mosquito acetylcholinesterase (AChE). It was hypothesized that this approach would yield a selective, high potency inhibitor that would also circumvent known catalytic site mutations (e.g. G119S) causing target site resistance. Accordingly, a series of bivalent phthalimide-pyrazole carbamates were prepared having an alkyl chain linker of varying length, along with other modifications. The most active compound was (1-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1H-pyrazol-4-yl methylcarbamate, 8a), which has a chain length of three carbons, good mosquito anticholinesterase activity, and ca. 5-fold selectivity compared to human AChE. Moreover, this compound was toxic to mosquitoes by topical application (LD50 = 63 ng/female) with only 6-fold cross resistance in the Akron strain of Anopheles gambiae that showed 50- to 60-fold resistance to conventional carbamate insecticides. However, contact lethality in the WHO paper assay was disappointing. The implications of these results for design of new mosquitocides are discussed.


Asunto(s)
Anopheles , Carbamatos/farmacología , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Resistencia a los Insecticidas
17.
Proteins ; 83(12): 2124-36, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26033498

RESUMEN

Coxiella burnetii is a highly infectious bacterium and potential agent of bioterrorism. However, it has not been studied as extensively as other biological agents, and very few of its proteins have been structurally characterized. To address this situation, we undertook a study of critical metabolic enzymes in C. burnetii that have great potential as drug targets. We used high-throughput techniques to produce novel crystal structures of 48 of these proteins. We selected one protein, C. burnetii dihydrofolate reductase (CbDHFR), for additional work to demonstrate the value of these structures for structure-based drug design. This enzyme's structure reveals a feature in the substrate binding groove that is different between CbDHFR and human dihydrofolate reductase (hDHFR). We then identified a compound by in silico screening that exploits this binding groove difference, and demonstrated that this compound inhibits CbDHFR with at least 25-fold greater potency than hDHFR. Since this binding groove feature is shared by many other prokaryotes, the compound identified could form the basis of a novel antibacterial agent effective against a broad spectrum of pathogenic bacteria.


Asunto(s)
Proteínas Bacterianas/química , Coxiella burnetii/efectos de los fármacos , Coxiella burnetii/genética , Antagonistas del Ácido Fólico/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Diseño de Fármacos , Antagonistas del Ácido Fólico/química , Humanos , Conformación Proteica , Tetrahidrofolato Deshidrogenasa/química
18.
Bioorg Med Chem Lett ; 25(20): 4405-11, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26386602

RESUMEN

Malaria is a devastating disease in sub-Saharan Africa, and current vector control measures are threatened by emerging resistance mechanisms. With the goal of developing new, selective, resistance-breaking insecticides we explored α-fluorinated methyl ketones as reversible covalent inhibitors of Anopheles gambiae acetylcholinesterase (AgAChE). Trifluoromethyl ketones 5 demonstrated remarkable volatility in microtiter plate assays, but 5c,e-h exhibited potent (1-100 nM) inhibition of wild type (WT) AgAChE and weak inhibition of resistant mutant G119S mutant AgAChE. Fluoromethyl ketones 10c-i exhibited submicromolar to micromolar inhibition of WT AgAChE, but again only weakly inhibited G119S AgAChE. Interestingly, difluoromethyl ketone inhibitors 9c and 9g had single digit nanomolar inhibition of WT AgAChE, and 9g had excellent potency against G119S AgAChE. Approach to steady-state inhibition was quite slow, but after 23 h incubation an IC50 value of 25.1 ± 1.2 nM was measured. We attribute the slow, tight-binding G119S AgAChE inhibition of 9g to a balance of steric size and electrophilicity. However, toxicities of 5g, 9g, and 10g to adult A. gambiae in tarsal contact, fumigation, and injection assays were lower than expected based on WT AgAChE inhibition potency and volatility. Potential toxicity-limiting factors are discussed.


Asunto(s)
Acetilcolinesterasa/metabolismo , Anopheles/enzimología , Inhibidores Enzimáticos/farmacología , Cetonas/farmacología , Acetilcolinesterasa/genética , Animales , Carbamatos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Cetonas/síntesis química , Cetonas/química , Estructura Molecular , Mutación , Relación Estructura-Actividad
19.
Bioorg Med Chem ; 23(6): 1321-40, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25684426

RESUMEN

To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification.


Asunto(s)
Acetilcolinesterasa/metabolismo , Anopheles/efectos de los fármacos , Anopheles/enzimología , Carbamatos/farmacología , Inhibidores de la Colinesterasa/farmacología , Isoxazoles/farmacología , Malaria , Acetilcolinesterasa/genética , Animales , Carbamatos/síntesis química , Carbamatos/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Malaria/transmisión , Estructura Molecular , Relación Estructura-Actividad
20.
Methods Mol Biol ; 2780: 129-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987467

RESUMEN

Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.


Asunto(s)
Bases de Datos de Proteínas , Simulación del Acoplamiento Molecular , Mapeo de Interacción de Proteínas , Proteínas , Programas Informáticos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Biología Computacional/métodos , Unión Proteica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA