Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(47): 12448-12453, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109273

RESUMEN

The TGF-ß family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc "trap," to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Anticuerpos Bloqueadores/farmacología , Anticuerpos Monoclonales/farmacología , Hipertrofia/inducido químicamente , Músculo Esquelético/efectos de los fármacos , Receptores de Activinas Tipo II/metabolismo , Activinas/metabolismo , Animales , Anticuerpos Bloqueadores/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Proteínas Morfogenéticas Óseas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Factores de Diferenciación de Crecimiento/metabolismo , Células HEK293 , Humanos , Hipertrofia/patología , Masculino , Ratones , Ratones SCID , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miostatina/metabolismo , Ratas , Ratas Wistar , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Síndrome Debilitante/tratamiento farmacológico , Síndrome Debilitante/patología
2.
iScience ; 24(12): 103434, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877494

RESUMEN

Inflammatory responses are crucial for regeneration following peripheral nerve injury (PNI). PNI triggers inflammatory responses at the site of injury. The DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream effector stimulator of interferon genes (STING) sense foreign and self-DNA and trigger type I interferon (IFN) immune responses. We demonstrate here that following PNI, the cGAS/STING pathway is upregulated in the sciatic nerve of naive rats and dysregulated in old rats. In a nerve crush mouse model where STING is knocked out, myelin content in sciatic nerve is increased resulting in accelerated functional axon recovery. STING KO mice have lower macrophage number in sciatic nerve and decreased microglia activation in spinal cord 1 week post injury. STING activation regulated processing of colony stimulating factor 1 receptor (CSF1R) and microglia survival in vitro. Taking together, these data highlight a previously unrecognized role of STING in the regulation of nerve regeneration.

3.
Cell Rep ; 21(11): 3003-3011, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241530

RESUMEN

ATP citrate lyase (ACL) plays a key role in regulating mitochondrial function, as well as glucose and lipid metabolism in skeletal muscle. We report here that ACL silencing impairs myoblast and satellite cell (SC) differentiation, and it is accompanied by a decrease in fast myosin heavy chain isoforms and MYOD. Conversely, overexpression of ACL enhances MYOD levels and promotes myogenesis. Myogenesis is dependent on transcriptional but also other mechanisms. We show that ACL regulates the net amount of acetyl groups available, leading to alterations in acetylation of H3(K9/14) and H3(K27) at the MYOD locus, thus increasing MYOD expression. ACL overexpression in murine skeletal muscle leads to improved regeneration after cardiotoxin-mediated damage. Thus, our findings suggest a mechanism for regulating SC differentiation and enhancing regeneration, which might be exploited for devising therapeutic approaches for treating skeletal muscle disease.


Asunto(s)
ATP Citrato (pro-S)-Liasa/genética , Histonas/genética , Músculo Esquelético/metabolismo , Proteína MioD/genética , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilación , Animales , Cardiotoxinas/toxicidad , Diferenciación Celular , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Proteína MioD/metabolismo , Cultivo Primario de Células , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Transducción de Señal , Transcripción Genética
4.
Cell Metab ; 21(6): 868-76, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26039450

RESUMEN

Mitochondrial dysfunction is associated with skeletal muscle pathology, including cachexia, sarcopenia, and the muscular dystrophies. ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes mitochondria-derived citrate into oxaloacetate and acetyl-CoA. Here we report that activation of ACL in skeletal muscle results in improved mitochondrial function. IGF1 induces activation of ACL in an AKT-dependent fashion. This results in an increase in cardiolipin, thus increasing critical mitochondrial complexes and supercomplex activity, and a resultant increase in oxygen consumption and cellular ATP levels. Conversely, knockdown of ACL in myotubes not only reduces mitochondrial complex I, IV, and V activity but also blocks IGF1-induced increases in oxygen consumption. In vivo, ACL activity is associated with increased ATP. Activation of this IGF1/ACL/cardiolipin pathway combines anabolic signaling with induction of mechanisms needed to provide required ATP.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Ácido Cítrico/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/enzimología , Consumo de Oxígeno/fisiología , Transducción de Señal/fisiología , Adenosina Trifosfato/metabolismo , Cardiolipinas/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA