Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 57: 65-86, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37384734

RESUMEN

Microglia, the resident immune cells of the central nervous system (CNS), are primarily derived from the embryonic yolk sac and make their way to the CNS during early development. They play key physiological and immunological roles across the life span, throughout health, injury, and disease. Recent transcriptomic studies have identified gene transcript signatures expressed by microglia that may provide the foundation for unprecedented insights into their functions. Microglial gene expression signatures can help distinguish them from macrophage cell types to a reasonable degree of certainty, depending on the context. Microglial expression patterns further suggest a heterogeneous population comprised of many states that vary according to the spatiotemporal context. Microglial diversity is most pronounced during development, when extensive CNS remodeling takes place, and following disease or injury. A next step of importance for the field will be to identify the functional roles performed by these various microglial states, with the perspective of targeting them therapeutically.


Asunto(s)
Sistema Nervioso Central , Microglía , Microglía/fisiología , Macrófagos , Transcriptoma/genética , Perfilación de la Expresión Génica
2.
Cell ; 166(4): 991-1003, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477514

RESUMEN

Small immune complexes cause type III hypersensitivity reactions that frequently result in tissue injury. The responsible mechanisms, however, remain unclear and differ depending on target organs. Here, we identify a kidney-specific anatomical and functional unit, formed by resident macrophages and peritubular capillary endothelial cells, which monitors the transport of proteins and particles ranging from 20 to 700 kDa or 10 to 200 nm into the kidney interstitium. Kidney-resident macrophages detect and scavenge circulating immune complexes "pumped" into the interstitium via trans-endothelial transport and trigger a FcγRIV-dependent inflammatory response and the recruitment of monocytes and neutrophils. In addition, FcγRIV and TLR pathways synergistically "super-activate" kidney macrophages when immune complexes contain a nucleic acid. These data identify a physiological function of tissue-resident kidney macrophages and a basic mechanism by which they initiate the inflammatory response to small immune complexes in the kidney.


Asunto(s)
Enfermedades del Complejo Inmune/inmunología , Riñón/citología , Riñón/inmunología , Macrófagos/inmunología , Animales , Complejo Antígeno-Anticuerpo , Células Endoteliales , Macrófagos/citología , Ratones Endogámicos C57BL , Microscopía Inmunoelectrónica , Monocitos/citología , Monocitos/inmunología , Neutrófilos/citología , Neutrófilos/inmunología , Receptores de IgG/inmunología
3.
Trends Immunol ; 43(12): 953-955, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36357264

RESUMEN

Hayes and collaborators recently unraveled that maternal immune activation in mice led to a long-lasting decrease in microglial immune reactivity. Thus, microglia exhibited a reduced immune response to a second proinflammatory stressor in adulthood. This altered microglial response impacted both astrocytic reactivity and neuronal circuitry.


Asunto(s)
Inflamación , Microglía , Embarazo , Femenino , Animales , Ratones , Inmunidad
4.
PLoS Biol ; 20(3): e3001578, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35263320

RESUMEN

Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation. Here, we report on the development of a light-inducible protein aggregation (LIPA) system that enables spatiotemporal control of α-synuclein (α-syn) aggregation into insoluble deposits called Lewy bodies (LBs), the pathological hallmark of Parkinson disease (PD) and other proteinopathies. We demonstrate that LIPA-α-syn inclusions mimic key biochemical, biophysical, and ultrastructural features of authentic LBs observed in PD-diseased brains. In vivo, LIPA-α-syn aggregates compromise nigrostriatal transmission, induce neurodegeneration and PD-like motor impairments. Collectively, our findings provide a new tool for the generation, visualization, and dissection of the role of α-syn aggregation in PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Análisis por Conglomerados , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(12): e2114545119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35286203

RESUMEN

Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.


Asunto(s)
Trastorno del Espectro Autista , Sistema Inmunológico , Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Adolescente , Animales , Encéfalo , Modelos Animales de Enfermedad , Femenino , Humanos , Sistema Inmunológico/fisiología , Inflamación , Imagen por Resonancia Magnética , Ratones , Embarazo
6.
J Neurochem ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504593

RESUMEN

Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.

7.
J Neuroinflammation ; 21(1): 32, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263227

RESUMEN

Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders caused by the interaction of genetic, environmental, and familial factors. These diseases have distinct pathologies and symptoms that are linked to specific cell populations in the brain. Notably, the immune system has been implicated in both diseases, with a particular focus on the dysfunction of microglia, the brain's resident immune cells, contributing to neuronal loss and exacerbating symptoms. Researchers use models of the neuroimmune system to gain a deeper understanding of the physiological and biological aspects of these neurodegenerative diseases and how they progress. Several in vitro and in vivo models, including 2D cultures and animal models, have been utilized. Recently, advancements have been made in optimizing these existing models and developing 3D models and organ-on-a-chip systems, holding tremendous promise in accurately mimicking the intricate intracellular environment. As a result, these models represent a crucial breakthrough in the transformation of current treatments for PD and AD by offering potential for conducting long-term disease-based modeling for therapeutic testing, reducing reliance on animal models, and significantly improving cell viability compared to conventional 2D models. The application of 3D and organ-on-a-chip models in neurodegenerative disease research marks a prosperous step forward, providing a more realistic representation of the complex interactions within the neuroimmune system. Ultimately, these refined models of the neuroimmune system aim to aid in the quest to combat and mitigate the impact of debilitating neuroimmune diseases on patients and their families.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Sistema Inmunológico , Microglía
8.
Brain Behav Immun ; 116: 126-139, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38016491

RESUMEN

INTRODUCTION: A wide range of positive, negative, and cognitive symptoms compose the clinical presentation of schizophrenia. Schizophrenia is a multifactorial disorder in which genetic and environmental risk factors interact for a full emergence of the disorder. Infectious challenges during pregnancy are a well-known environmental risk factor for schizophrenia. Also, genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia. Translational animal models recapitulating these complex gene-environment associations have a great potential to untangle schizophrenia neurobiology and propose new therapeutic strategies. METHODS: Given that genetic variants affecting the function of fractalkine signaling between neurons and microglia were linked to schizophrenia, we compared the outcomes of a well-characterized model of maternal immune activation induced using the viral mimetic polyinosinic:polycytidylic acid (Poly I:C) in wild-type versus fractalkine receptor knockout mice. Possible behavioral and immune alterations were assessed in male and female offspring during adulthood. Considering the role of the hippocampus in schizophrenia, microglial analyses and bulk RNA sequencing were performed within this region to assess the neuroimmune dynamics at play. Males and females were examined separately. RESULTS: Offspring exposed to the dual challenge paradigm exhibited symptoms relevant to schizophrenia and unpredictably to mood disorders. Males displayed social and cognitive deficits related to schizophrenia, while females mainly presented anxiety-like behaviors related to mood disorders. Hippocampal microglia in females exposed to the dual challenge were hypertrophic, indicative of an increased surveillance, whereas those in males showed on the other end of the spectrum blunted morphologies with a reduced phagocytosis. Hippocampal bulk-RNA sequencing further revealed a downregulation in females of genes related to GABAergic transmission, which represents one of the main proposed causes of mood disorders. CONCLUSIONS: Building on previous results, we identified in the current study distinctive behavioral phenotypes in female mice exposed to a dual genetic and environmental challenge, thus proposing a new model of neurodevelopmentally-associated mood and affective symptoms. This paves the way to future sex-specific investigations into the susceptibility to developmental challenges using animal models based on genetic and immune vulnerability as presented here.


Asunto(s)
Microglía , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratones , Femenino , Masculino , Animales , Quimiocina CX3CL1 , Poli I-C/farmacología , Conducta Animal/fisiología , Perfilación de la Expresión Génica , Hipocampo , Modelos Animales de Enfermedad
9.
Curr Issues Mol Biol ; 45(3): 2609-2628, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975541

RESUMEN

Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier. Additionally, tissue-resident macrophage progenies derive from various peripheral sites that exhibit hematopoietic potential, and this has resulted in interpretation issues surrounding their origin. Intensive research endeavors have intended to track microglial progenitors during development and disease. The current review provides a corpus of recent evidence in an attempt to disentangle the birthplace of microglia from the progenitor state and underlies the molecular elements that drive microgliogenesis. Furthermore, it caters towards tracking the lineage spatiotemporally during embryonic development and outlining microglial repopulation in the mature CNS. This collection of data can potentially shed light on the therapeutic potential of microglia for CNS perturbations across various levels of severity.

10.
EMBO J ; 38(17): e101997, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31373067

RESUMEN

Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.


Asunto(s)
Microglía/clasificación , Animales , Plasticidad de la Célula , Humanos , Microglía/inmunología , Fenotipo
11.
Dev Neurosci ; 45(4): 191-209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36944325

RESUMEN

Maternal immune activation (MIA) can result from a variety of maternal inflammatory factors, including metabolic disorders, nutritional deficits, infections, and psychosocial stress. MIA has been consistently recognized as a major risk factor for neurodevelopmental disorders, and this association seems to be especially important for viral infections as viral exposure during pregnancy was associated with a higher risk of developing neurodevelopmental disorders, such as schizophrenia. In MIA, the gestational parent's inflammatory response to an immune stimulus alters or interrupts fetal development, triggering neurodevelopmental consequences. As MIA can occur in any pregnancy, it is important to understand the many factors at play that contribute to altered brain development in the offspring, especially considering recent global events such as the COVID-19 pandemic. The underlying mechanisms by which MIA results in deleterious outcomes are not yet clear, but due to the inflammatory response it initiates, it is becoming apparent that microglia are critically involved. Through investigation of MIA animal models, the role of microglia in this field is becoming more evident. Compelling evidence from animal models indicates that MIA can disrupt synaptic pruning, neuronal progenitor cell proliferation/differentiation, oligodendrogenesis, and more. Microglia appear as an active player, assisting these neural-related functions during healthy development but also mediating MIA-induced disturbances in these critical processes when neurodevelopment is challenged. The present review illustrates this complex web by reviewing recent literature, focusing on the outcomes of MIA resulting from viral mimetic polyinosinic-polycytidylic acid in rodents, to provide a clear description of how MIA impacts microglial functions and what this means for the offspring's neurodevelopment. Moreover, we discuss the possible implications of the COVID-19 pandemic on the neurodevelopment of the current and next generations in the frame of MIA models and propose some putative pharmacological and non-pharmacological approaches to prevent or attenuate MIA consequences.


Asunto(s)
COVID-19 , Efectos Tardíos de la Exposición Prenatal , Embarazo , Animales , Femenino , Humanos , Microglía , Conducta Animal/fisiología , Poli I-C/farmacología , Roedores , Pandemias , Modelos Animales de Enfermedad
12.
J Neuroinflammation ; 20(1): 273, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990235

RESUMEN

Traumatic spinal cord injury can cause immediate physical damage to the spinal cord and result in severe neurological deficits. The primary, mechanical tissue damage triggers a variety of secondary damage mechanisms at the injury site which significantly contribute to a larger lesion size and increased functional damage. Inflammatory mechanisms which directly involve both microglia (MG) and monocyte-derived macrophages (MDM) play important roles in the post-injury processes, including inflammation and debris clearing. In the current study, we investigated changes in the structure and function of MG/MDM in the injured spinal cord of adult female mice, 7 days after a thoracic contusion SCI. With the use of chip mapping scanning electron microscopy, which allows to image large samples at the nanoscale, we performed an ultrastructural comparison of MG/MDM located near the lesion vs adjacent regions to provide novel insights into the mechanisms at play post-injury. We found that MG/MDM located near the lesion had more mitochondria overall, including mitochondria with and without morphological alterations, and had a higher proportion of altered mitochondria. MG/MDM near the lesion also showed an increased number of phagosomes, including phagosomes containing myelin and partiallydigested materials. MG/MDM near the injury interacted differently with the spinal cord parenchyma, as shown by their reduced number of direct contacts with synaptic elements, axon terminals and dendritic spines. In this study, we characterized the ultrastructural changes of MG/MDM in response to spinal cord tissue damage in mice, uncovering changes in phagocytic activity, mitochondrial ultrastructure, and inter-cellular interactions within the spinal cord parenchyma.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Ratones , Femenino , Animales , Microglía/patología , Macrófagos/patología , Traumatismos de la Médula Espinal/patología , Fagocitos/patología , Médula Espinal/patología
13.
J Neuroinflammation ; 20(1): 73, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918925

RESUMEN

The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Ratones , Humanos , Masculino , Animales , Anciano , Lactante , Astrocitos/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
14.
Nat Methods ; 17(2): 232-239, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31768061

RESUMEN

Autophagy is a degradative program that maintains cellular homeostasis. Autophagy defects have been described in numerous diseases. However, analysis of autophagy rates can be challenging, particularly in rare cell populations or in vivo, due to limitations in currently available tools for measuring autophagy induction. Here, we describe a method to monitor autophagy by measuring phosphorylation of the protein ATG16L1. We developed and characterized a monoclonal antibody that can detect phospho-ATG16L1 endogenously in mammalian cells. Importantly, phospho-ATG16L1 is only present on newly forming autophagosomes. Therefore, its levels are not affected by prolonged stress or late-stage autophagy blocks, which can confound autophagy analysis. Moreover, we show that ATG16L1 phosphorylation is a conserved signaling pathway activated by numerous autophagy-inducing stressors. The described antibody is suitable for western blot, immunofluorescence and immunohistochemistry, and measured phospho-ATG16L1 levels directly correspond to autophagy rates. Taken together, this phospho-antibody represents an exciting tool to study autophagy induction.


Asunto(s)
Anticuerpos/inmunología , Autofagia , Animales , Proteínas Portadoras/metabolismo , Humanos , Fosforilación
15.
Acta Neuropathol ; 146(5): 663-683, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37656188

RESUMEN

Microglia are the brain's resident macrophages, which guide various developmental processes crucial for brain maturation, activity, and plasticity. Microglial progenitors enter the telencephalic wall by the 4th postconceptional week and colonise the fetal brain in a manner that spatiotemporally tracks key neurodevelopmental processes in humans. However, much of what we know about how microglia shape neurodevelopment comes from rodent studies. Multiple differences exist between human and rodent microglia warranting further focus on the human condition, particularly as microglia are emerging as critically involved in the pathological signature of various cognitive and neurodevelopmental disorders. In this article, we review the evidence supporting microglial involvement in basic neurodevelopmental processes by focusing on the human species. We next concur on the neuropathological evidence demonstrating whether and how microglia contribute to the aetiology of two neurodevelopmental disorders: autism spectrum conditions and schizophrenia. Next, we highlight how recent technologies have revolutionised our understanding of microglial biology with a focus on how these tools can help us elucidate at unprecedented resolution the links between microglia and neurodevelopmental disorders. We conclude by reviewing which current treatment approaches have shown most promise towards targeting microglia in neurodevelopmental disorders and suggest novel avenues for future consideration.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Humanos , Microglía/patología , Trastornos del Neurodesarrollo/patología , Macrófagos/patología , Neuropatología , Encéfalo/patología
16.
Brain Behav Immun ; 107: 153-164, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202169

RESUMEN

Sleep is a natural physiological state, tightly regulated through several neuroanatomical and neurochemical systems, which is essential to maintain physical and mental health. Recent studies revealed that the functions of microglia, the resident immune cells of the brain, differ along the sleep-wake cycle. Inflammatory cytokines, such as interleukin-1ß and tumor necrosis factor-α, mainly produced by microglia in the brain, are also well-known to promote sleep. However, the contributing role of microglia on sleep regulation remains largely elusive, even more so in females. Given the higher prevalence of various sleep disorders in women, we aimed to determine the role of microglia in regulating the sleep-wake cycle specifically in female mice. Microglia were depleted in adult female mice with inhibitors of the colony-stimulating factor 1 receptor (CSF1R) (PLX3397 or PLX5622), which is required for microglial population maintenance. This led to a 65-73% reduction of the microglial population, as confirmed by immunofluorescence staining against IBA1 (marker of microglia/macrophages) and TMEM119 (microglia-specific marker) in the reticular nucleus of the thalamus and primary motor cortex. The spontaneous sleep-wake cycle was evaluated at steady-state, during microglial homeostasis disruption and after complete microglial repopulation, upon cessation of treatment with the inhibitors of CSF1R, using electroencephalography (EEG) and electromyography (EMG). We found that microglia-depleted female mice spent more time in non-rapid eye movement (NREM) sleep and had an increased number of NREM sleep episodes, which was partially restored after microglial total repopulation. To determine whether microglia could regulate sleep locally by modulating synaptic transmission, we used patch clamp to record spontaneous activity of pyramidal neurons in the primary motor cortex, which showed an increase of excitatory synaptic transmission during the dark phase. These changes in neuronal activity were modulated by microglial depletion in a phase-dependent manner. Altogether, our results indicate that microglia are involved in the sleep regulation of female mice, further strengthening their potential implication in the development and/or progression of sleep disorders. Furthermore, our findings indicate that microglial repopulation can contribute to normalizing sleep alterations caused by their partial depletion.


Asunto(s)
Movimientos Oculares , Trastornos del Sueño-Vigilia , Femenino , Animales , Ratones , Duración del Sueño , Factor de Necrosis Tumoral alfa
17.
Brain Behav Immun ; 113: 415-431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543251

RESUMEN

INTRODUCTION: The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS: We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS: 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION: This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.

18.
Brain Behav Immun ; 114: 383-406, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689276

RESUMEN

Psychological stress confers an increased risk for several diseases including psychiatric conditions. The susceptibility to psychological stress is modulated by various factors, many of them being modifiable lifestyle choices. The ketogenic diet (KD) has emerged as a dietary regime that offers positive outcomes on mood and health status. Psychological stress and elevated inflammation are common features of neuropsychiatric disorders such as certain types of major depressive disorder. KD has been attributed anti-inflammatory properties that could underlie its beneficial consequences on the brain and behavior. Microglia are the main drivers of inflammation in the central nervous system. They are known to respond to both dietary changes and psychological stress, notably by modifying their production of cytokines and relationships among the brain parenchyma. To assess the interactions between KD and the stress response, including effects on microglia, we examined adult male mice on control diet (CD) versus KD that underwent 10 days of repeated social defeat (RSD) or remained non-stressed (controls; CTRLs). Through a social interaction test, stressed mice were classified as susceptible (SUS) or resistant (RES) to RSD. The mouse population fed a KD tended to have a higher proportion of individuals classified as RES following RSD. Microglial morphology and ultrastructure were then analyzed in the ventral hippocampus CA1, a brain region known to present structural alterations as a response to psychological stress. Distinct changes in microglial soma and arborization linked to the KD, SUS and RES phenotypes were revealed. Ultrastructural analysis by electron microscopy showed a clear reduction of cellular stress markers in microglia from KD fed animals. Furthermore, ultrastructural analysis showed that microglial contacts with synaptic elements were reduced in the SUS compared to the RES and CTRL groups. Hippocampal lipidomic analyses lastly identified a distinct lipid profile in SUS animals compared to CTRLs. These key differences, combined with the distinct microglial responses to diet and stress, indicate that unique metabolic changes may underlie the stress susceptibility phenotypes. Altogether, our results reveal novel mechanisms by which a KD might improve the resistance to psychological stress.


Asunto(s)
Trastorno Depresivo Mayor , Dieta Cetogénica , Ratones , Masculino , Animales , Microglía/metabolismo , Conducta Social , Derrota Social , Trastorno Depresivo Mayor/metabolismo , Lipidómica , Hipocampo , Inflamación/metabolismo , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL
19.
Neurochem Res ; 48(4): 1129-1166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36327017

RESUMEN

There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.


Asunto(s)
Anestésicos , Alucinógenos , Ketamina , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Ketamina/farmacología , Ketamina/uso terapéutico , Microglía , Dietilamida del Ácido Lisérgico/farmacología , Dietilamida del Ácido Lisérgico/uso terapéutico
20.
Glia ; 70(1): 89-105, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487590

RESUMEN

Microglia, the brain's resident macrophages, actively contribute to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor-1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622-treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase-dependent manner.


Asunto(s)
Microglía , Transmisión Sináptica , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Neuronas/metabolismo , Sueño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA