Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(3): 534-548.e19, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275861

RESUMEN

Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRß signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion.


Asunto(s)
Neoplasias Encefálicas/inmunología , Puntos de Control del Ciclo Celular , Glioblastoma/inmunología , Células Asesinas Naturales/inmunología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Neoplasias Encefálicas/patología , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Glioblastoma/patología , Humanos , Inmunidad Innata , Interferón gamma/metabolismo , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor 2 Gatillante de la Citotoxidad Natural/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Chem Inf Model ; 64(7): 2695-2704, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38293736

RESUMEN

Predicting compound activity in assays is a long-standing challenge in drug discovery. Computational models based on compound-induced gene expression signatures from a single profiling assay have shown promise toward predicting compound activity in other, seemingly unrelated, assays. Applications of such models include predicting mechanisms-of-action (MoA) for phenotypic hits, identifying off-target activities, and identifying polypharmacologies. Here, we introduce transcriptomics-to-activity transformer (TAT) models that leverage gene expression profiles observed over compound treatment at multiple concentrations to predict the compound activity in other biochemical or cellular assays. We built TAT models based on gene expression data from a RASL-seq assay to predict the activity of 2692 compounds in 262 dose-response assays. We obtained useful models for 51% of the assays, as determined through a realistic held-out set. Prospectively, we experimentally validated the activity predictions of a TAT model in a malaria inhibition assay. With a 63% hit rate, TAT successfully identified several submicromolar malaria inhibitors. Our results thus demonstrate the potential of transcriptomic responses over compound concentration and the TAT modeling framework as a cost-efficient way to identify the bioactivities of promising compounds across many assays.


Asunto(s)
Aprendizaje Profundo , Malaria , Humanos , Transcriptoma , Descubrimiento de Drogas/métodos , Perfilación de la Expresión Génica
3.
Clin Immunol ; 256: 109808, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37852344

RESUMEN

We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference. Blood monocyte cell subsets were also skewed, showing a comparative decrease in non-classical CD14-CD16+ and intermediate CD14+CD16+ monocytes. In lymphocytes, the CD8+ T effector memory cells displayed a gene expression signature consistent with stronger T cell activation in Progressors. These early stage observations could serve as the basis for the development of prognostic biomarkers of disease risk and interventional strategies to improve the management of severe COVID-19. BACKGROUND: Much of the literature on immune response post-SARS-CoV-2 infection has been in the acute and post-acute phases of infection. TRANSLATIONAL SIGNIFICANCE: We found differences at early time points of infection in approximately 160 participants. We compared multi-omic signatures in immune cells between individuals progressing to needing more significant medical intervention and non-progressors. We observed widespread evidence of a state of increased inflammation associated with progression, supported by a range of epigenomic, transcriptomic, and proteomic signatures. The signatures we identified support other findings at later time points and serve as the basis for prognostic biomarker development or to inform interventional strategies.


Asunto(s)
COVID-19 , Humanos , Multiómica , Proteómica , SARS-CoV-2 , Citocinas
4.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361851

RESUMEN

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Hibridación Fluorescente in Situ , Centrómero/genética , Secuencias Repetitivas de Ácidos Nucleicos , ARN Ribosómico 18S/genética
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555478

RESUMEN

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Asunto(s)
Lagartos , Animales , Masculino , Sintenía/genética , Lagartos/genética , Cromosomas Sexuales/genética , Cromosomas , Genoma , Cariotipo , Evolución Molecular
6.
Cytogenet Genome Res ; 161(1-2): 32-42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33677437

RESUMEN

Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.


Asunto(s)
Carpas/genética , ADN/genética , Ploidias , Animales , Citogenética , Diploidia , Femenino , Duplicación de Gen , Genoma , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Cytogenet Genome Res ; 160(3): 111-117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32146465

RESUMEN

B chromosomes (Bs) are enigmatic accessory genomic elements extensively characterized in diverse eukaryotes. Since their discovery in the beginning of the 20th century, B chromosomes have been the subject of investigation in laboratories all around the world. As a consequence, scientific meetings have dealt with B chromosomes, including the most specific and important conference in the field, "The B Chromosome Conference." The 4th B Chromosome Conference (4BCC) took place in Botucatu, Brazil, in 2019 and was an excellent opportunity to discuss the latest developments in the B chromosome research field. B chromosome science has advanced from classical and molecular cytogenetics to genomics and bioinformatics approaches. The recent advances in next-generation sequencing technologies and high-throughput molecular biology protocols have led Bs to be the subject of massive data analysis, thus enabling the investigation of structural and functional issues not considered before. Although extensive progress has been made, questions are still remaining to be answered. The advances in functional studies based on RNA, epigenetics, and gene ontologies open the perspective to a better understanding of the complex biology of B chromosomes.


Asunto(s)
Cromosomas/genética , Citogenética , Eucariontes/genética , Evolución Molecular , Brasil , Epigenómica , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN/genética
8.
Cytogenet Genome Res ; 160(3): 134-140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092753

RESUMEN

Reptiles show a remarkable diversity of sex determination mechanisms and sex chromosome systems, derived from different autosomal pairs. The origin of the ZW sex chromosomes of Lacerta agilis, a widespread Eurasian lizard species, is a matter of discussion: is it a small macrochromosome from the 11-18 group common to all lacertids, or does this species have a unique ZW pair derived from the large chromosome 5? Using independent molecular cytogenetic methods, we investigated the karyotype of L. agilis exigua from Siberia, Russia, to identify the sex chromosomes. FISH with a flow-sorted chromosome painting probe derived from L. strigata and specific to chromosomes 13, 14, and Z confirmed that the Z chromosome of L. agilis is a small macrochromosome, the same as in L. strigata. FISH with the telomeric probe showed an extensive accumulation of the telomere-like repeat in the W chromosome in agreement with previous studies, excluding the possibility that the lineages of L. agilis studied in different works could have different sex chromosome systems due to a putative intra-species polymorphism. Our results reinforce the idea of the stability of the sex chromosomes and lack of evidence for sex-chromosome turnovers in known species of Lacertidae.


Asunto(s)
Evolución Biológica , Lagartos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosomas Sexuales/genética , Animales , Hibridación Fluorescente in Situ , Federación de Rusia
9.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334059

RESUMEN

MicroRNAs play a crucial role in eukaryotic gene regulation. For a long time, only little was known about microRNA-based gene regulatory mechanisms in polyploid animal genomes due to difficulties of polyploid genome assembly. However, in recent years, several polyploid genomes of fish, amphibian, and even invertebrate species have been sequenced and assembled. Here we investigated several key microRNA-associated genes in the recently sequenced sterlet (Acipenser ruthenus) genome, whose lineage has undergone a whole genome duplication around 180 MYA. We show that two paralogs of drosha, dgcr8, xpo1, and xpo5 as well as most ago genes have been retained after the acipenserid-specific whole genome duplication, while ago1 and ago3 genes have lost one paralog. While most diploid vertebrates possess only a single copy of dicer1, we strikingly found four paralogs of this gene in the sterlet genome, derived from a tandem segmental duplication that occurred prior to the last whole genome duplication. ago1,3,4 and exportins1,5 look to be prone to additional segment duplications producing up to four-five paralog copies in ray-finned fishes. We demonstrate for the first time exon microsatellite amplification in the acipenserid drosha2 gene, resulting in a highly variable protein product, which may indicate sub- or neofunctionalization. Paralogous copies of most microRNA metabolism genes exhibit different expression profiles in various tissues and remain functional despite the rediploidization process. Subfunctionalization of microRNA processing gene paralogs may be beneficial for different pathways of microRNA metabolism. Genetic variability of microRNA processing genes may represent a substrate for natural selection, and, by increasing genetic plasticity, could facilitate adaptations to changing environments.


Asunto(s)
Peces/genética , MicroARNs/genética , Poliploidía , Vertebrados/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biología Computacional/métodos , Peces/clasificación , Perfilación de la Expresión Génica , Filogenia
10.
Chromosoma ; 127(3): 301-311, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29380046

RESUMEN

Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos , Cromosomas , Marcadores Genéticos , Murinae/genética , Animales , Genoma , Inestabilidad Genómica , Humanos , Hibridación Fluorescente in Situ , Flujo de Trabajo
11.
Chromosoma ; 127(1): 115-128, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29124392

RESUMEN

The Neotropical fish, Hoplias malabaricus, is one of the most cytogenetically studied fish taxon with seven distinct karyomorphs (A-G) comprising varying degrees of sex chromosome differentiation, ranging from homomorphic to highly differentiated simple and multiple sex chromosomes. Therefore, this fish offers a unique opportunity to track evolutionary mechanisms standing behind the sex chromosome evolution and differentiation. Here, we focused on a high-resolution cytogenetic characterization of the unique XX/XY1Y2 multiple sex chromosome system found in one of its karyomorphs (G). For this, we applied a suite of conventional (Giemsa-staining, C-banding) and molecular cytogenetic approaches, including fluorescence in situ hybridization FISH (with 5S and 18S rDNAs, 10 microsatellite motifs and telomeric (TTAGGG) n sequences as probes), comparative genomic hybridization (CGH), and whole chromosome painting (WCP). In addition, we performed comparative analyses with other Erythrinidae species to discover the evolutionary origin of this unique karyomorph G-specific XY1Y2 multiple sex chromosome system. WCP experiments confirmed the homology between these multiple sex chromosomes and the nascent XX/XY sex system found in the karyomorph F, but disproved a homology with those of karyomorphs A-D and other closely related species. Besides, the putative origin of such XY1Y2 system by rearrangements of several chromosome pairs from an ancestral karyotype was also highlighted. In addition, clear identification of a male-specific region on the Y1 chromosome suggested a differential pattern of repetitive sequences accumulation. The present data suggested the origin of this unique XY1Y2 sex system, revealing evidences for the high level of plasticity of sex chromosome differentiation within the Erythrinidae.


Asunto(s)
Evolución Molecular , Peces/genética , Cromosomas Sexuales/genética , Animales , Pintura Cromosómica , Hibridación Genómica Comparativa , Femenino , Peces/metabolismo , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Repeticiones de Microsatélite , Secuencias Repetitivas de Ácidos Nucleicos , Telómero
12.
Mol Genet Genomics ; 294(1): 13-21, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30146671

RESUMEN

Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.


Asunto(s)
Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lagartos/genética , Análisis de Secuencia de ADN/métodos , Animales , División Celular , Proteínas Cromosómicas no Histona/genética , Mapeo Cromosómico , Pintura Cromosómica , Evolución Molecular , Proteínas de Microfilamentos/genética , Filogenia
13.
Cytogenet Genome Res ; 157(1-2): 115-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820011

RESUMEN

Pleurodont lizards are characterized by an ancient system of sex chromosomes. Along with stability of the central component of the system (homologous to the X chromosome of Anolis carolinensis [Dactyloidae], ACAX), in some genera the ancestral sex chromosomes are fused with microautosomes, forming neo-sex chromosomes. The genus Ctenonotus (Dactyloidae) is characterized by multiple X1X1X2X2/X1X2Y sex chromosomes. According to cytogenetic data, the large neo-Y chromosome is formed by fusion of the ancestral Y chromosome with 2 microautosomes (homologous to ACA10 or ACA11 and ACA12), the X1 chromosome is formed by fusion of the ancestral X chromosome with the autosome homologous to ACA10 or ACA11, and the X2 chromosome is homologous to autosome ACA12. To determine more precisely the content and evolution of the Ctenonotus sex chromosomes, we sequenced flow-sorted chromosomes (both sex chromosomes and microautosomes as control) of 2 species with a similar system: C. pogus and C. sabanus. Our results indicate that the translocated part of the X1 is homologous to ACA11, X2 is homologous to ACA12, and the Y contains segments homologous to both ACA11 and ACA12. Molecular divergence estimates suggest that the ancestral X-derived part has completely degenerated in the Y of Ctenonotus, similar to the degeneration of the Norops sagrei Y chromosome (Dactyloidae). The newly added regions show loss of DNA content, but without degeneration of the conserved regions. We hypothesize that the translocation of autosomal blocks onto sex chromosomes facilitated rapid degeneration of the pseudoautosomal region on the ancestral Y.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lagartos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Pintura Cromosómica/métodos , Cromosomas/genética , ADN/química , ADN/genética , ADN/metabolismo , Femenino , Lagartos/clasificación , Masculino , Especificidad de la Especie , Translocación Genética
14.
PLoS Genet ; 12(4): e1005954, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27082250

RESUMEN

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


Asunto(s)
Lubina/genética , Mapeo Cromosómico , Animales , Lubina/clasificación , Genoma , Hibridación Fluorescente in Situ , Filogenia
16.
Genetica ; 146(1): 123, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29260363

RESUMEN

ere, we report that a paragraph from the "Discussion" section of Cioffi et al. (2011; p. 1070, 4th paragraph of column 1) was transcribed (with only minor edits) from an introductory paragraph previously published in Chromosome Research by O'Meally et al.

17.
Curr Genomics ; 19(3): 207-215, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606908

RESUMEN

BACKGROUND: The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). MATERIALS & METHODS: Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. CONCLUSION: Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.

18.
Chromosoma ; 125(4): 661-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27411693

RESUMEN

Acipenseriformes is an order of ray-finned fishes, comprising 27 extant species of sturgeons and paddlefishes inhabiting waters of the Northern Hemisphere. The order has a basal position within Actinopteri (ray-finned fish minus polypterids) and is characterized by many specific morphological and genomic features, including high diploid chromosome numbers, various levels of ploidy between species, unclear sex determination, and propensity to interspecific hybridization. Recent advances in molecular genetics, genomics, and comparative cytogenetics produced novel data on different aspects of acipenseriform biology, including improved phylogenetic reconstructions and better understanding of genome structure. Here, we discuss the cytogenetic and genomic traits of acipenseriforms and their connection with polyploidization and tolerance to interspecific hybridization.


Asunto(s)
Peces/genética , Genoma/genética , Poliploidía , Procesos de Determinación del Sexo/genética , Animales , Evolución Biológica , Citogenética , Evolución Molecular , Cariotipo
19.
Cytogenet Genome Res ; 151(2): 89-95, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315859

RESUMEN

Iguanians (Pleurodonta) are one of the reptile lineages that, like birds and mammals, have sex chromosomes of ancient origin. In most iguanians these are microchromosomes, making a distinction between the X and Y as well as between homeologous sex chromosomes in other species difficult. Meiotic chromosome analysis may be used to elucidate their differentiation, because meiotic prophase chromosomes are longer and less condensed than metaphase chromosomes, and the homologues are paired with each other, revealing minor heteromorphisms. Using electron and fluorescent microscopy of surface spread synaptonemal complexes (SCs) and immunolocalization of the proteins of the SC (SYCP3), the centromere, and recombination nodules (MLH1), we examined sex chromosome synapsis and recombination in 2 species of anoles (Dactyloidae), Anolis carolinensis and Deiroptyx coelestinus, in which the sex chromosomes represent the ancestral condition of iguanians. We detected clear differences in size between the anole X and Y microchromosomes and found an interspecies difference in the localization of the pseudoautosomal region. Our results show that the apparent homomorphy of certain reptile sex chromosome systems can hide a cryptic differentiation, which potentially may influence the evolution of sexual dimorphism and speciation.


Asunto(s)
Lagartos/genética , Cromosomas Sexuales , Complejo Sinaptonémico/genética , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Microscopía Fluorescente , Recombinación Genética , Caracteres Sexuales
20.
Cytogenet Genome Res ; 152(2): 65-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719894

RESUMEN

Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de los Mamíferos/genética , Cricetulus/genética , Cariotipo , Filogenia , Animales , Haplotipos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA