Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 135(1): 159-173, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900856

RESUMEN

Over the past several centuries, the integration of contemporary medical techniques and innovative technologies, like genetic sequencing, have played a pivotal role in enhancing our comprehension of congenital vascular and lymphatic disorders. Nonetheless, the uncommon and complex characteristics of these disorders, especially considering their formation during the intrauterine stage, present significant obstacles in diagnosis and treatment. Here, we review the intricacies of these congenital abnormalities, offering an in-depth examination of key diagnostic approaches, genetic factors, and therapeutic methods.


Asunto(s)
Enfermedades Linfáticas , Humanos , Enfermedades Linfáticas/terapia , Enfermedades Linfáticas/genética , Enfermedades Vasculares/congénito , Enfermedades Vasculares/genética , Enfermedades Vasculares/terapia , Enfermedades Vasculares/diagnóstico , Animales , Malformaciones Vasculares/genética , Malformaciones Vasculares/terapia , Vasos Linfáticos/anomalías , Predisposición Genética a la Enfermedad
2.
Circ Res ; 129(1): 131-135, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34166069

RESUMEN

Vascular malformations, affecting ≈1% to 1.5% of the population, comprise a spectrum of developmental patterning defects of capillaries, arteries, veins, and/or lymphatics. The majority of vascular malformations occur sporadically; however, inherited malformations exist as a part of complex congenital diseases. The malformations, ranging from birthmarks to life-threatening conditions, are present at birth, but may reveal signs and symptoms-including pain, bleeding, disfigurement, and functional defects of vital organs-in infancy, childhood, or adulthood. Vascular malformations often exhibit recurrent patterns at affected sites due to the lack of curative treatments. This review series provides a state-of-the-art assessment of vascular malformation research at basic, clinical, genetic, and translational levels.


Asunto(s)
Vasos Sanguíneos/anomalías , Anomalías Linfáticas , Vasos Linfáticos/anomalías , Malformaciones Vasculares , Animales , Vasos Sanguíneos/metabolismo , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Anomalías Linfáticas/genética , Anomalías Linfáticas/metabolismo , Anomalías Linfáticas/patología , Anomalías Linfáticas/terapia , Vasos Linfáticos/metabolismo , Fenotipo , Factores de Riesgo , Malformaciones Vasculares/genética , Malformaciones Vasculares/metabolismo , Malformaciones Vasculares/patología , Malformaciones Vasculares/terapia
6.
7.
Cell Mol Life Sci ; 76(10): 1865-1876, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30758642

RESUMEN

Hippocratic Corpus, a collection of Greek medical literature, described the functional anatomy of the lymphatic system in the fifth century B.C. Subsequent studies in cadavers and surgical patients firmly established that lymphatic vessels drain extravasated interstitial fluid, also known as lymph, into the venous system at the bilateral lymphovenous junctions. Recent advances revealed that lymphovenous valves and platelet-mediated hemostasis at the lymphovenous junctions maintain life-long separation of the blood and lymphatic vascular systems. Here, we review murine models that exhibit failure of blood-lymph separation to highlight the novel mechanisms and molecular targets for the modulation of lymphatic disorders. Specifically, we focus on the transcription factors, cofactors, and signaling pathways that regulate lymphovenous valve development and platelet-mediated lymphovenous hemostasis, which cooperate to maintain blood-lymph separation.


Asunto(s)
Plaquetas/metabolismo , Linfa/metabolismo , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Hemostasis/genética , Humanos , Vasos Linfáticos/embriología , Ratones , Transducción de Señal/genética
10.
Circ Res ; 128(8): 1170-1172, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33856919

Asunto(s)
Transferasas , Humanos
11.
Circ Res ; 129(4): 488-490, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351798

Asunto(s)
Corazón , Mesodermo
12.
Dev Dyn ; 246(12): 1015-1026, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28791750

RESUMEN

BACKGROUND: Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. RESULTS: The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. CONCLUSIONS: Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Región Branquial/embriología , Proliferación Celular/fisiología , Huesos Faciales/embriología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Cresta Neural/embriología , Animales , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/genética , Ratones , Ratones Transgénicos
16.
J Biol Chem ; 290(45): 27067-27089, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26420484

RESUMEN

About two-thirds of human congenital heart disease involves second heart field-derived structures. Histone-modifying enzymes, histone deacetylases (HDACs), regulate the epigenome; however, their functions within the second heart field remain elusive. Here we demonstrate that histone deacetylase 3 (HDAC3) orchestrates epigenetic silencing of Tgf-ß1, a causative factor in congenital heart disease pathogenesis, in a deacetylase-independent manner to regulate development of second heart field-derived structures. In murine embryos lacking HDAC3 in the second heart field, increased TGF-ß1 bioavailability is associated with ascending aortic dilatation, outflow tract malrotation, overriding aorta, double outlet right ventricle, aberrant semilunar valve development, bicuspid aortic valve, ventricular septal defects, and embryonic lethality. Activation of TGF-ß signaling causes aberrant endothelial-to-mesenchymal transition and altered extracellular matrix homeostasis in HDAC3-null outflow tracts and semilunar valves, and pharmacological inhibition of TGF-ß rescues these defects. HDAC3 recruits components of the PRC2 complex, methyltransferase EZH2, EED, and SUZ12, to the NCOR complex to enrich trimethylation of Lys-27 on histone H3 at the Tgf-ß1 regulatory region and thereby maintains epigenetic silencing of Tgf-ß1 specifically within the second heart field-derived mesenchyme. Wild-type HDAC3 or catalytically inactive HDAC3 expression rescues aberrant endothelial-to-mesenchymal transition and epigenetic silencing of Tgf-ß1 in HDAC3-null outflow tracts and semilunar valves. These findings reveal that epigenetic dysregulation within the second heart field is a predisposing factor for congenital heart disease.


Asunto(s)
Epigénesis Genética , Corazón Fetal/embriología , Corazón Fetal/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Femenino , Corazón Fetal/anomalías , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Válvulas Cardíacas/anomalías , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Histona Desacetilasas/deficiencia , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Embarazo , Transducción de Señal
17.
Hum Mol Genet ; 23(14): 3801-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24565863

RESUMEN

Congenital heart defects often result from improper differentiation of cardiac progenitor cells. Although transcription factors involved in cardiac progenitor cell differentiation have been described, the associated chromatin modifiers in this process remain largely unknown. Here we show that mouse embryos lacking the chromatin-modifying enzyme histone deacetylase 3 (Hdac3) in cardiac progenitor cells exhibit precocious cardiomyocyte differentiation, severe cardiac developmental defects, upregulation of Tbx5 target genes and embryonic lethality. Hdac3 physically interacts with Tbx5 and modulates its acetylation to repress Tbx5-dependent activation of cardiomyocyte lineage-specific genes. These findings reveal that Hdac3 plays a critical role in cardiac progenitor cells to regulate early cardiogenesis.


Asunto(s)
Corazón/embriología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas de Dominio T Box/metabolismo , Acetilación , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Células HEK293 , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal
18.
Dev Biol ; 377(2): 333-44, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23506836

RESUMEN

Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells.


Asunto(s)
Anomalías Craneofaciales/genética , Cara/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Factor de Transcripción MSX1/metabolismo , Morfogénesis/fisiología , Cráneo/embriología , Animales , Técnicas Histológicas , Histona Desacetilasas/genética , Inmunohistoquímica , Hibridación in Situ , Ratones , Cresta Neural/embriología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
19.
Nat Med ; 13(3): 324-31, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17322895

RESUMEN

In the adult heart, a variety of stresses induce re-expression of a fetal gene program in association with myocyte hypertrophy and heart failure. Here we show that histone deacetylase-2 (Hdac2) regulates expression of many fetal cardiac isoforms. Hdac2 deficiency or chemical histone deacetylase (HDAC) inhibition prevented the re-expression of fetal genes and attenuated cardiac hypertrophy in hearts exposed to hypertrophic stimuli. Resistance to hypertrophy was associated with increased expression of the gene encoding inositol polyphosphate-5-phosphatase f (Inpp5f) resulting in constitutive activation of glycogen synthase kinase 3beta (Gsk3beta) via inactivation of thymoma viral proto-oncogene (Akt) and 3-phosphoinositide-dependent protein kinase-1 (Pdk1). In contrast, Hdac2 transgenic mice had augmented hypertrophy associated with inactivated Gsk3beta. Chemical inhibition of activated Gsk3beta allowed Hdac2-deficient adults to become sensitive to hypertrophic stimulation. These results suggest that Hdac2 is an important molecular target of HDAC inhibitors in the heart and that Hdac2 and Gsk3beta are components of a regulatory pathway providing an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Histona Desacetilasas/fisiología , Proteínas Represoras/fisiología , Animales , Cardiomegalia/embriología , Cardiomegalia/genética , Activación Enzimática/fisiología , Feto , Glucógeno Sintasa Quinasa 3 beta , Histona Desacetilasa 2 , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Transducción de Señal/fisiología
20.
Cell Rep ; 43(4): 114114, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625791

RESUMEN

Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.


Asunto(s)
Células Endoteliales , Mutación con Ganancia de Función , Pulmón , Proteínas de la Membrana , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones , Pulmón/patología , Pulmón/metabolismo , Linfocitos/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/metabolismo , Ratones Endogámicos C57BL , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA