Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316019

RESUMEN

We experimentally elucidate the impact dynamics of ethylene glycol (EG) droplets laden with both hydrophilic and hydrophobic SiO2 nanoparticles (NPs) onto a flat heated surface in non-boiling, boiling, and Leidenfrost regimes. We use seven nanofluid concentrations (Cp), ranging from 0.89 to 64.3 wt %, and control the surface temperature (Ts) between 100 and 400 °C, while the nanofluid droplet's impact velocity is constant at 0.22 ± 0.02 m/s. Phase diagrams of impact outcomes are established to illustrate the effect of the additive nanoparticles on the droplets' impact dynamics, revealing that nanoparticles modify droplet impact behaviors differently in each regime. In the non-boiling regime, the droplet spreading profile remains unaffected by nanoparticles up to Cp < 11.9 wt % before reaching the maximum spreading diameter (ßmax). For nanofluid drops with higher nanofluid concentration, the increasing viscosity with concentration is likely to be the primary factor that affects the droplets' spreading profile in the non-boiling regime Ts ≲ Tsat ≈ 200 °C, as the saturation temperature. In the boiling regime 200 °C < Ts ≲ 350 °C, a small amount of nanoparticle addition (Cp = 0.89 wt %) promotes atomization regardless of nanoparticle wettability. Finally, manifested in a complete rebound due to an intervening vapor layer, the Leidenfrost temperature (TL) of the nanofluid droplets is affected by both nanofluid concentration and nanoparticles' wettability. The nanofluid droplets' TL increases with higher nanofluid concentration; moreover, this Leidenfrost temperature increment is more significant for EG droplets laden with hydrophobic nanoparticles. Our results quantitatively reveal the significant influence of nanoparticle concentrations and wettability on drop spreading, impact outcome, and Leidenfrost temperature on heat surfaces, potentially benefiting applications in coating, spraying, and cooling.

2.
Langmuir ; 39(50): 18327-18341, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38055354

RESUMEN

Accurate prediction of droplet behavior upon impact on a heated nanostructured surface is vital for various industrial applications. In this study, we leverage multiple data-driven machine learning (ML) techniques to model the impact outcome and droplet spreading, employing existing experimental data. Our approach incorporates a comprehensive range of critical control parameters, such as the impact velocity (V), surface temperature (Ts), nanopillars' packing fraction (ϕ), and surface roughness (r). We obtain optimal results when utilizing the artificial neural network classification (ANNC) to construct a phase diagram that encompasses all of the experimental impact behaviors. Additionally, we utilize the support vector regression (SVR) method to model the maximum spreading factor (ßmax) as a function of the Weber number (We), defined as the ratio of droplet kinetic to surface energy, and Ts for each surface combination. Consistent with previous experimental observations, our results illustrate that nanostructures not only introduce distinct impact behaviors, such as central jetting, but also influence the boundaries among the deposition, rebound, and splashing regimes within the phase diagram. An increase in ϕ at a constant r promotes deposition and spreading events, while increasing r at a constant ϕ results in enhanced heat transfer to promote the Leidenfrost effect for the rebound regime and a greater disturbance of the liquid lamella to trigger splashing. The SVR prediction reveals the existence of a We-number threshold governed by the nanostructure parameters. Beyond this threshold, the maximum spreading factor (ßmax) of a spreading droplet becomes independent of the surface temperature (Ts) as We increases, suggesting that fluid properties are likely the dominating factors influencing the spreading dynamics in the extreme We range.

3.
Langmuir ; 38(51): 16073-16083, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36516403

RESUMEN

Ionic liquids (ILs)─salts in a liquid state─play a crucial role in various applications, such as green solvents for chemical synthesis and catalysis, lubricants, especially for micro- and nanoelectromechanical systems, and electrolytes in solar cells. These applications critically rely on unique or tunable bulk properties of ionic liquids, such as viscosity, density, and surface tension. Furthermore, their interactions with different solid surfaces of various roughness and structures may uphold other promising applications, such as combustion, cooling, and coating. However, only a few systematic studies of IL wetting and interactions with solid surfaces exist. Here, we experimentally and theoretically investigate the dynamic wetting and contact angles (CA) of water and three kinds of ionic liquid droplets on hydrophobic microstructures of surface roughness (r = 2.61) and packing fraction (ϕ = 0.47) formed by micropillars arranged in a periodic pattern. The results show that, except for water, higher-viscosity ionic liquids have greater advancing and receding contact angles with increasing contact line velocity. Water drops initially form a gas-trapping, CB wetting state, whereas all three ionic liquid drops are in a Wenzel wetting state, where liquids penetrate and completely wet the microstructures. We find that an existing model comparing the global surface energies between a CB and a Wenzel state agrees well with the observed wetting states. In addition, a molecular dynamic model well predicts the experimental data and is used to explain the observed dynamic wetting for the ILs and superhydrophobic substrate. Our results further show that energy dissipation occurs more significantly in the three-phase contact line region than in the liquid bulk.

4.
Langmuir ; 38(1): 593-601, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34967641

RESUMEN

Surfactant-laden sessile droplet evaporation plays a crucial role in a variety of omnipresent natural and technological applications, such as drying, coating, spray, and inkjet printing. Surfactant molecules can adsorb easily on interfaces and, hence, destructively ruin the useful gas-trapping wetting state (i.e., Cassie-Baxter, CB) of a drop on superhydrophobic (SH) surfaces. However, the influence of surfactant adsorption or concentration on evaporation modes has been rarely investigated so far. Here, we investigate the evaporation dynamics of aqueous didodecyldimethylammonium bromide (DDAB) sessile droplet on SH surfaces made of regular hydrophobic micropillars, with various dimensionless surfactant concentrations (CS), primarily using experiments. We find that all drops initially form a CB state with a pinned base radius and evaporate in a mode of constant contact radius (CCR). Water and low-CS (=0.02) drop subsequently evaporate with a constant contact angle (CCA) mode, followed by a CCR mode and, eventually, a mixed-mode. By contrast, high-CS (of 0.25-1) droplets undergo a complex mixed mode, with rapidly increasing base radius, and finally a mixed mode, with slowly decreasing base radius and contact angle. The experimental data reveal that contact-angle-dependent evaporative mass flux, m, collapses onto a nearly universal curve depending on CS. For the low-CS (of 0-0.25) drops, m is lower and consistent with an evaporative cooling model, whereas high-CS (of 0.5-1) droplets are consistent with a pure vapor-diffusive model. We further show that the critical CS delineating these two evaporative models correlates with saturated surfactant adsorption on both liquid-solid and liquid-vapor interfaces.

5.
Langmuir ; 37(1): 348-356, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33377783

RESUMEN

We report facile one- and two-step processes for the fabrication of transparent ultrahydrophobic surfaces and three-dimensional (3D)-printed superhydrophobic (SH) microstructures, respectively. In the one-step method, polydimethylsiloxane (PDMS) solution is treated thermally at 350 °C for 4 h, while PDMS-soot is generated and deposited on a glass slide to obtain a transparent SH surface without further chemical modification. For the two-step approach, SH surfaces are obtained by incorporating a 3D printing technique with a convenient hydrophobic coating method. Herein, we first 3D-print microstructured substrates with particular surface parameters, which are designed to facilitate a stable gas-trapping Cassie-Baxter (CB) wetting state based on a thermodynamic calculation. We subsequently coat the 3D-printed microstructures with candle soot (CS) or octadecyltrichlorosilane (OTS) solution to make superhydrophobic surfaces with mechanical durability. These surfaces exhibit an ultrahigh static water contact angle (CA, θ ≃ 158 ± 2 and 147 ± 2° for the CS and OTS coating, respectively) and a low roll-off angle for water droplets. Both static and dynamic (in terms of the advancing and receding) contact angles of a water droplet on the fabricated SH surfaces are in good agreement with the theoretical prediction of Cassie-Baxter contact angles. Furthermore, after a one-year-long shelf time, the SH substrates fabricated sustain good superhydrophobicity after ultrasonic water treatment and against several chemical droplets. All of these methods are simple, cost-effective, and highly efficient processes. The processes, design principle, and contact angle measurements presented here are useful for preparing transparent and superhydrophobic surfaces using additive manufacturing, which enables large-scale production and promisingly expands the application scope of utilizing self-cleaning superhydrophobic material.

6.
Phys Rev Lett ; 124(3): 034501, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-32031863

RESUMEN

Bubble nucleation in water induced by boiling, gas supersaturation, or cavitation usually originates from preexisting gas cavities trapped into solid defects. Even though the destabilization of such gas pockets, called nuclei, has been extensively studied, little is known on the nuclei dynamic. Here, nuclei of water-particle suspensions are excited by acoustic cavitation, and their dynamic is investigated by monitoring the cavitation probability over several thousand pulses. A stable and reproducible cavitation probability emerges after a few thousand pulses and depends on particle concentration, hydrophobicity, and dissolved gas content. Our observations indicate that a stable nuclei distribution is reached at a later time, different from previously reported nuclei depletion in early time. This apparent paradox is elucidated by varying the excitation rate, where the cavitation activity increases with the repetition period, indicating that the nuclei depletion is balanced by spontaneous nucleation or growth of nuclei. A model of this self-supporting generation of nuclei suggests an origin from dissolved gas adsorption on surfaces. The method developed can be utilized to further understand the spontaneous formation and distribution of nanosized bubbles on heterogeneous surfaces.

7.
Langmuir ; 36(16): 4308-4316, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32298121

RESUMEN

We experimentally and theoretically examine the influence of a double-chain cationic surfactant, didodecyldimethylammonium bromide (DDAB), on the wetting states and contact angles on superhydrophobic (SH) surfaces made of hydrophobic microcylinders. We use two types of micropatterns of different surface roughness, r, and packing fraction, ϕ, and vary nine dimensionless surfactant concentrations (CS), normalized by the critical micelle concentration (CMC), in the experiments. At low CS, some of the surfactant-laden droplets are in a gas-trapping, Cassie-Baxter (CB) state on the high-roughness microstructures. In contrast, some droplets are in a complete-wetting Wenzel (W) state on the low-roughness microtextures. We found that the contact angle of CB drops can be well predicted using a thermodynamic model considering surfactant adsorption at the liquid-vapor (LV) and solid-liquid (SL) interfaces. At high CS, however, all of the DDAB drops wet in a Wenzel mode. Based on a Gibbsian thermodynamic analysis, we find that for the two types of superhydrophobic surfaces used, the Wenzel state has the lowest thermodynamic energy and thus is more favorable theoretically. The CB state, however, is metastable at low CS due to a thermodynamic energy barrier. The metastable CB wetting state becomes more stable on the SH microtextures with greater ϕ and r, in agreement with our experimental observations. Finally, we generalize this surface-energy analysis to provide useful designs of surface parameters for a DDAB-laden surfactant droplet on the SH surface with a stable and robust CB state.

8.
Langmuir ; 36(17): 4835-4841, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32309954

RESUMEN

We employed a convenient evaporation approach to fabricate photonic crystals by naturally drying droplets laden with nanoparticles on a superhydrophobic surface. The final drying morphology could be controlled by the concentration of nanoparticles. A dilute droplet resulted in a torus, whereas a quasi-spherical cap with a bottom cavity was made from a concentrated droplet. Remarkably, the nanofluid droplets maintained high contact angles (≳120°) during the entire evaporation process because of inhomogeneous surface wetting. Bottom-view snapshots revealed that during evaporation the color of the contact area changed sequentially from white to red, orange, yellow, and eventually to green. Scanning electron microscopy and Voronoi analysis demonstrated that nanoparticles were self-assembled to a hexagonal pattern. Finally, based on the effects of particle size, material, and volume concentration on the reflected wavelengths, a model has been developed to successfully predict the reflected wavelength peaks from the contact area of evaporating colloidal droplets. Our model can be easily adopted as a manufacturing guide for functional photonic crystals to predict the optimal reflected color made by evaporation-driven self-assembly of photonic crystals.

9.
Langmuir ; 36(34): 10051-10060, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32794773

RESUMEN

Drop impact on a heated surface not only displays intriguing flow motion but also plays a crucial role in various applications and processes. We examine the impact dynamics of a water drop on both heated flat and nanostructured surfaces, with a wide range of impact velocity (V) and surface temperature (Ts) values. Via high-speed imaging and temperature measurements, we construct phase diagrams of different impact outcomes on these heated surfaces. Like those on the heated flat surface, water drops can deposit, spread, rebound, or break-up with atomizing on the heated nanostructures as V and Ts are increased. We find a significant influence of nanostructures on the impact dynamics by generating particular events in specific parameter ranges. For example, events of splashing, gentle central jetting, and violent central jetting are observed on and thus triggered by the heated nanostructures. The heated nanotextures with high roughness can easily trigger the splashing and the central jetting. Our data of the normalized maximum spreading diameter for the heated surfaces display distinct trends at low and high Weber number (We) ranges, where We compares the kinetic to surface energy of the impacting droplet. Finally, compared with the flat surface, the dynamic Leidenfrost temperature (TLD) for We ≈ 10 is decreased (by ≈60 °C) by the high-roughness nanotextures. In addition, our experimental data of TLD is consistent with a model prediction proposed by balancing the droplet dynamic and vapor pressure.

10.
Soft Matter ; 13(5): 978-984, 2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28091660

RESUMEN

Water-repellent, rough surfaces have a remarkable and beneficial wetting property: when a water droplet comes in contact with a small fraction of the solid, both liquid-solid adhesion and hydrodynamic drag are reduced. As a prominent example from nature, the lotus leaf-comprised of a wax-like material with micro- and nano-scaled roughness-has recently inspired numerous syntheses of superhydrophobic substrates. Due to the diverse applications of superhydrophobicity, much research has been devoted to the fabrication and investigations of hydrophobic micro-structures using established micro-fabrication techniques. However, wetting transitions remain relatively little explored. During evaporation, a water droplet undergoes a wetting transition from a (low-frictional) partial to (adhesive) complete contact with the solid, destroying the superhydrophobicity and the self-cleaning properties of the slippery surface. Here, we experimentally examine the wetting transition of a drying droplet on hydrophobic nano-structures, a previously unexplored regime. In addition, using a theoretical analysis we found a universal criterion of this wetting transition that is characterized by a critical contact angle. Different from previous results showing different critical droplet sizes, our results show a universal, geometrically-dependent, critical contact angle, which agrees well with various data for both hydrophobic micro- and nano-structures.

11.
Proc Natl Acad Sci U S A ; 110(21): 8422-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650352

RESUMEN

Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas-liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ, of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of -2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when >/~ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles.


Asunto(s)
Microburbujas , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos
12.
Soft Matter ; 11(5): 882-8, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25466584

RESUMEN

Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.

13.
Soft Matter ; 10(21): 3703-7, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24740526

RESUMEN

When a drop impacts a surface, a dimple can be formed due to the increased air pressure beneath the drop before it wets the surface. We employ a high-speed color interferometry technique to measure the evolution of the air layer profiles under millimeter-sized drops impacting hydrophobic micropatterned surfaces for impact velocities of typically 0.4 m s(-1). We account for the impact phenomena and show the influence of the micropillar spacing and height on the air layer profiles. A decrease in pillar spacing increases the height of the air dimple below the impacting drop. Before complete wetting, when the impacting drop only wets the top of the pillars, the air-droplet interface deforms in between the pillars. For large pillar heights the deformation is larger, but the dimple height is hardly influenced.

14.
Sci Rep ; 14(1): 2338, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282007

RESUMEN

Despite their aesthetic elegance, wavy or fingering patterns emerge when a fluid of low viscosity pushes another immiscible fluid of high viscosity in a porous medium, producing an incomplete sweep and hampering several crucial technologies. Some examples include chromatography, printing, coating flows, oil-well cementing, as well as large-scale technologies of groundwater and enhanced oil recovery. Controlling such fingering instabilities is notoriously challenging and unresolved for complex fluids of varying viscosity because the fluids' mobility contrast is often predetermined and yet the predominant drive in determining a stable, flat or unstable, wavy interface. Here we show, experimentally and theoretically, how to suppress or control the primary viscous fingering patterns of a common type of complex fluids (of shear-thinning with a low yield stress) using a radially tapered cell of linearly varying gap thickness, h(r). Experimentally, we displace a complex viscous (PAA) solution with gas under a constant flow rate (Q), varied between 0.02 and 2 slpm (standard liter per minute), in a radially converging cell with a constant gap-thickness gradient, [Formula: see text]. A stable, uniform interface emerges at low Q and in a steeper cell (i.e., greater [Formula: see text]) for the complex fluids, whereas unstable fingering pattern at high Q and smaller [Formula: see text]. Our theoretical predictions with a simplified linear stability analysis show an agreeable stability criterion with experimental data, quantitatively offering strategies to control complex fluid-fluid patterns and displacements in microfluidics and porous media.

15.
Membranes (Basel) ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629807

RESUMEN

Diffusioosmosis concerns ionic flow driven by a concentration difference in a charged nano-confinement and has significant applications in micro/nano-fluidics because of its nonlinear current-voltage response, thereby acting as an active electric gating. We carry out a comprehensive computation fluid dynamics simulation to investigate diffusioosmotic flow in a charged nanochannel of linearly varying height under an electrolyte concentration gradient. We analyze the effects of cone angle (α), nanochannel length (l) and tip diameter (dt), concentration difference (Δc = 0-1 mM), and external flow on the diffusioosmotic velocity in a tapered nanochannel with a constant surface charge density (σ). External flow velocity (varied over five orders of magnitude) shows a negligible influence on the diffusioosmotic flow inside the tapered nanochannel. We observed that a cone angle causes diffusioosmotic flow to move towards the direction of increasing gap thickness because of stronger local electric field caused by the overlapping of electric double layers near the smaller orifice. Moreover, the magnitude of average nanoflow velocity increases with increasing |α|. Flow velocity at the nanochannel tip increases when dt is smaller or when l is greater. In addition, the magnitude of diffusioosmotic velocity increases with increasing Δc. Our numerical results demonstrate the nonlinear dependence of tapered, diffusioosmotic flow on various crucial control parameters, e.g., concentration difference, cone angle, tip diameter, and nanochannel length, whereas an insignificant relationship on flow rate in the low Peclet number regime is observed.

16.
Lab Chip ; 22(24): 4974-4983, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36422062

RESUMEN

Surface wettability has a crucial impact on drop splashing, emulsion dynamics, slip flow for drag reduction, fluid-fluid displacement, and various microfluidic applications. Targeting enhanced oil recovery (EOR) applications, we experimentally investigate the effect of matrix wettability on the invasion morphology and sweep efficiency of viscous oil displaced by different aqueous floods using microfluidics, whose porous network mimics a sandstone structure. For comparison, systematic experiments of the same oil-flood pair are done in both hydrophilic and hydrophobic microfluidic chips. The results show that the hydrophilic microfluidic rock has a remarkable increase in oil recovery by a factor of ≈1.44, compared to the hydrophobic case. In addition, we observe a more pronounced lateral growth of the displacing pattern of aqueous flood for the hydrophilic surface. Finally, we quantitatively explain the increasing factor in the recovery rate and finger width for the hydrophilic vs. hydrophobic rock-liked porous networks by incorporating the contact angle into a scaling analysis.


Asunto(s)
Microfluídica
17.
Membranes (Basel) ; 11(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34832059

RESUMEN

Reverse electrodialysis (RED) is a promising technology to extract sustainable salinity gradient energy. However, the RED technology has not reached its full potential due to membrane efficiency and fouling and the complex interplay between ionic flows and fluidic configurations. We investigate renewable power generation by harnessing salinity gradient energy during reverse electrodialysis using a lab-scaled fluidic cell, consisting of two reservoirs separated by a nanoporous ion exchange membrane, under various flow rates (qf) and salt-concentration difference (Δc). The current-voltage (I-V) characteristics of the single RED unit reveals a linear dependence, similar to an electrochemical cell. The experimental results show that the change of inflow velocity has an insignificant impact on the I-V data for a wide range of flow rates explored (0.01-1 mL/min), corresponding to a low-Peclet number regime. Both the maximum RED power density (Pc,m) and open-circuit voltage (ϕ0) increase with increasing Δc. On the one hand, the RED cell's internal resistance (Rc) empirically reveals a power-law dependence of Rc∝Δc-α. On the other hand, the open-circuit voltage shows a logarithmic relationship of ϕ0=BlnΔc+ß. These experimental results are consistent with those by a nonlinear numerical simulation considering a single charged nanochannel, suggesting that parallelization of charged nano-capillaries might be a good upscaling model for a nanoporous membrane for RED applications.

18.
Lab Chip ; 21(20): 3942-3951, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636830

RESUMEN

Carbon capture and sequestration (CCS) in a deep saline aquifer is one of the most promising technologies to mitigate anthropologically emitted carbon dioxide. Accurately quantifying the mass transport of CO2 at pore-scales is crucial but challenging for successful CCS deployment. Here, we conduct high-pressure microfluidic experiments, mimicking reservoir conditions up to 9.5 MPa and 35 °C, to elucidate the microfluidic mass transfer process of CO2 at three different states (i.e., gas, liquid, and supercritical phase) into water. We measure the size change of CO2 micro-bubbles/droplets generated using a microfluidic T-junction to estimate the volumetric mass transfer coefficient (kLa), quantifying the rate change of CO2 concentration under the driving force of concentration gradient. The results show that bubbles/droplets under high-pressure conditions reach a steady state faster than low pressure. The measured volumetric mass transfer coefficient increases with the Reynolds number (based on the liquid slug) and is nearly independent of the injection pressure for both the gas and liquid phases. In addition, kLa significantly enlarges with increasing high pressure at the supercritical state. Compared with various chemical engineering applications using millimeter-sized capillaries (with typical kLa measured ranging from ≈0.005 to 0.8 s-1), the microfluidic results show a significant increase in the volumetric mass transfer of CO2 into water by two to three orders of magnitude, O (102-103), with decreasing hydrodynamic diameter (of ≈50 µm).


Asunto(s)
Dióxido de Carbono , Agua Subterránea , Microfluídica , Agua
19.
Lab Chip ; 20(20): 3806-3814, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32924049

RESUMEN

Salt precipitation in porous media can detrimentally hinder the processes of carbon capture and storage (CCS) in deep saline aquifers because pore-blocking salt crystals can decrease the injectivity of wells and formation permeabilities. It is, however, challenging to unravel the pore-scale dynamics and underlying mechanisms of salt nucleation using conventional core-flooding techniques. Here, we conduct microfluidic experiments to reveal the high-resolution, pore-scale measurements of the de-wetting patterns and drying rate of brine and subsequent salt precipitation during gas injection. We investigate the effects of pore structures and brine concentrations. The results show three distinct stages: (I) initial, (II) rapid growth, and (III) final phases in the progression of salt nucleation, with different rates and size distributions upon brine drying. Two types of crystal patterns, bulk crystal and polycrystalline aggregate, are observed. In addition, most of the large salt deposits (≥0.5 × 105µm2) are precipitated at the near outlet region during the second rapid growth stage. The influence of porosity is demonstrated by correlating the brine-drying and salt-precipitation speeds during the second rapid growth phase.

20.
J Phys Chem Lett ; 10(23): 7510-7515, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31763845

RESUMEN

Surfactants, as amphiphilic molecules, adsorb easily at interfaces and can detrimentally destroy the useful, gas-trapping wetting state (Cassie-Baxter, CB) of a drop on superhydrophobic surfaces. Here, we provide a quantitative understanding of how surfactants alter the wetting state and contact angle of aqueous drops on hydrophobic microstructures of different roughness (r) and solid fraction (ϕ). Experimentally, at low surfactant concentrations (C), some drops attain a homogeneous wetting state (Wenzel, W), while others attain the CB state whose large contact angles can be predicted by a thermodynamic model. In contrast, all of our high-C drops attain the Wenzel state. To explain this observed transition, we consider the free energy and find that, theoretically, for our surfaces the W state is always preferred, while the CB state is metastable at low C, consistent with experimental results. Furthermore, we provide a beneficial blueprint for stable CB states for applications exploiting superhydrophobicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA