RESUMEN
INTRODUCTION: 5-Fluorouracil (5-FU) is used to treat various cancers, including non-small-cell lung cancer (NSCLC). It inhibits nucleotide synthesis and induces single- and double-strand DNA breaks. In the homologous recombination pathway, radiation-sensitive 52 (Rad52) plays a crucial role in DNA repair by promoting the annealing of complementary single-stranded DNA and stimulating Rad51 recombinase activity. Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor with clinical activity against NSCLC cells. However, whether the combination of 5-FU and erlotinib has synergistic activity against NSCLC cells is unknown. METHODS: After the 5-FU and/or erlotinib treatment, the expressions of Rad52 mRNA were determined by quantitative real-time polymerase chain reaction analysis. Protein levels of Rad52 and phospho-p38 MAPK were determined by Western blot analysis. We used specific Rad52 or p38 MAPK small interfering RNA and p38 MAPK inhibitor (SB2023580) to examine the role of p38 MAPK-Rad52 signal in regulating the chemosensitivity of 5-FU and/or erlotinib. Cell viability was assessed by MTS assay and trypan blue exclusion assay. RESULTS: In 2 squamous cell carcinoma cell lines, namely, H520 and H1703, 5-FU reduced Rad52 expression in a p38 MAPK inactivation-dependent manner. Enhancement of p38 MAPK activity by transfection with MKK6E (a constitutively active form of MKK6) vector increased the Rad52 protein level and cell survival by 5-FU. However, in human lung bronchioloalveolar cell adenocarcinoma A549 cells, 5-FU reduced Rad52 expression and induced cytotoxicity independent of p38 MAPK. Moreover, 5-FU synergistically enhanced the cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells; these effects were associated with Rad52 downregulation and p38 MAPK inactivation in H520 and H1703 cells. CONCLUSION: The results provide a rationale for combining 5-FU and erlotinib in lung cancer treatment.