Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(9): 13352-13367, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403812

RESUMEN

To improve the color-conversion efficiency based on a quantum-well (QW) light-emitting diode (LED), a more energy-saving strategy is needed to increase the energy transfer efficiency from the electrical input power of the LED into the emission of over-coated color-converter, not just from LED emission into converted light. In this regard, the efficiency of energy transfer of any mechanism from LED QW into the color-converter is an important issue. By overlaying blue-emitting QW structures and GaN templates with both deposited metal nanoparticles (DMNPs) and color-converting quantum dot (QD) linked synthesized metal nanoparticles (SMNPs) of different localized surface plasmon (LSP) resonance wavelengths for producing multiple surface plasmon (SP) coupling mechanisms with the QW and QD, we study the enhancement variations of their internal quantum efficiencies and photoluminescence decay times. By comparing the QD emission efficiencies between the samples with and without QW, one can observe the advantageous effect of QW coupling with LSP resonances on QD emission efficiency. Also, with the LSP resonance wavelengths of both DMNPs and SMNPs close to the QW emission wavelength for producing strong SP coupling with the QW and hence QD absorption, a higher QD emission or color-conversion efficiency can be obtained.

2.
Nanotechnology ; 31(29): 295001, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32268310

RESUMEN

The plasmonic Dicke effect means a cooperative emission mechanism of multiple light emitters when they are simultaneously coupled with the same surface plasmon (SP) mode of a metal nanostructure to achieve a higher collective emission efficiency. Here, we compare the enhancements of emission efficiency among a series of SP-coupled InGaN/GaN quantum-well (QW) structures of different QW period numbers to show an emission behavior consistent with the plasmonic Dicke effect. The relative enhancement of overall emission efficiency increases with QW period number until it reaches a critical value, beyond which the enhancement starts to decrease. This critical QW period number corresponds to the effective depth range of the plasmonic Dicke effect in a multiple-QW system. It also represents an optimized QW structure for maximizing the SP coupling effect. Internal quantum efficiency and time-resolved photoluminescence are measured for comparing the enhanced emission efficiencies of blue and green QW structures with different QW period numbers through SP coupling induced by surface Ag nanoparticles.

3.
Nanotechnology ; 30(27): 275201, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30901764

RESUMEN

An AlGaN/GaN multi-shell structure on a GaN nanorod (NR) is formed by using the self-catalytic pulsed growth process of metalorganic chemical vapor deposition with Ga and Al/N supplies in the first and second half-cycles, respectively. With Al supply, a thin AlGaN layer is precipitated near the end of a growth cycle to form the AlGaN/GaN structure. Because of the lower chemical potential for GaN nucleation, when compared with AlN, a GaN layer is first deposited in a growth cycle. AlGaN is not precipitated until the AlN nucleation probability becomes higher when the catalytic Ga droplet is almost exhausted. Because the Al adatoms on the NR sidewalls hinder the upward migration of Ga adatoms for contributing to the Ga droplet at the NR top, the size of the Ga droplet decreases along growth cycle leading to the decrease of GaN layer thickness at the top until a steady state is reached. In this process, the slant facet of an NR changes from the (1-102)-plane into (1-101)-plane. To interpret the observed growth behaviors, formulations are derived for theoretically modeling the AlN nucleation probability, NR height increment in each growth cycle, and the time of exhausting the Ga droplet in a cycle.

4.
Opt Express ; 26(18): 23629-23640, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184861

RESUMEN

The efficiency enhancement of light color conversion from blue quantum well (QW) emission into red quantum dot (QD) emission through surface plasmon (SP) coupling by coating CdSe/ZnS QDs on the top of an InGaN/GaN QW light-emitting diode (LED) is demonstrated. Ag nanoparticles (NPs) are fabricated within a transparent conductive Ga-doped ZnO interlayer to induce localized surface plasmon (LSP) resonance for simultaneously coupling with the QWs and QDs. Such a coupling process generates three enhancement effects, including QW emission, QD absorption at the QW emission wavelength, and QD emission, leading to an overall enhancement effect of QD emission intensity. An Ag NP geometry for inducing an LSP resonance peak around the middle between the QW and QD emission wavelengths results in the optimized condition for maximizing QD emission enhancement. Internal quantum efficiency and photoluminescence (PL) decay time measurements are performed to show consistent results with LED performance characterizations, even though the QD absorption of PL excitation laser may mix with the SP-induced QD absorption enhancement effect in PL measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA