Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 17(5): 1493-506, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21268152

RESUMEN

The antibiotic neocarzinostatin comprises a carrier protein with a well-defined cavity for accommodating an active enediyne chromophore. The protein has two disulfides, one (Cys(37)-Cys(47)) lies on the cavity bottom and the other (Cys(88)-Cys(93)) in a constrained short loop. When the chromophore is not bound to the protein, a thiol-induced cycloaromatization of the enediyne into a tetrahydroindacene derivative is responsible for the potent antitumor activity. When it is protein-bound, the protein diverts the cycloaromatization pathway to form a distinct hydroxyisochromene-type product. How the protein directs the enediyne chemistry is an interesting puzzle, and various suggestions have been proposed in the past. We screened more than fifty thiols and manipulated conditions to locate reaction features and search for factors that could influence the protein directing strength. Thiol- and oxygen-concentration-dependence studies suggested that disulfides, which maintain the steric rigidity of the protein, could play a key role in diverting the cycloaromatization pathway. For direct proofs, we made mutations at each of the two disulfides by replacing sulfur atoms with oxygen. Circular dichroism and two-dimensional NMR spectroscopy studies suggested that the mutations changed neither the protein conformation nor the ligand interactions. Analyses of the thiol-induced cycloaromatization revealed that rupture of Cys(37)-Cys(47) made the protein almost completely lose its chemical directing ability, whereas rupture of Cys(88)-Cys(93) had only a minor influence. The results demonstrated that the steric rigidity of the binding cavity, but not necessary the whole protein, played an important role in the protein-directed mechanism.


Asunto(s)
Proteínas Portadoras/química , Cisteína/química , Enediinos/química , Cinostatina/química , Antibióticos Antineoplásicos/química , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Unión Proteica , Conformación Proteica , Compuestos de Sulfhidrilo/química
2.
PLoS One ; 9(8): e105286, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144619

RESUMEN

Antrodia camphorata (A. camphorata) is a unique, endemic and extremely rare mushroom species native to Taiwan, and both crude extracts of and purified chemical compounds from A. camphorata have been reported to have a variety of significant beneficial effects, such as anti-tumor and anti-inflammatory activity. However, reports on the effects of A. camphorata against dental pathogens have been limited. Oral health is now recognized as important for overall general health, including conditions such as dental caries, periodontal disease and rheumatoid arthritis. Streptococcus mutans (S. mutans) and Porphyromonas gingivalis (P. gingivalis) are the most common bacteria associated with dental plaque and periodontopathic diseases, respectively. Thus, our study examined the ability of five various crude extracts of A. camphorata to inhibit the growth of dental bacteria and anti-adherence in vitro. Among the extracts, the ethanol, ethyl acetate and chloroform extracts exhibited the lowest MICs against P. gingivalis and S. mutans (MIC = 4∼16 µg/mL). The MIC of the aqueous extract was greater than 2048 µg/mL against both P. gingivalis and S. mutans. In vitro adherence of S. mutans was significantly inhibited by the addition of either the ethyl acetate extract or chloroform extract (MIC = 16∼24 µg/mL), while the ethanol extract (MIC = 32∼64 µg/mL) exhibited moderate inhibitory activity. Based on the result of this study, the ethyl acetate and chloroform extracts of A. camphorata may be good candidates for oral hygiene agents to control dental caries and periodontopathic conditions.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antrodia/química , Bacterias/efectos de los fármacos , Caries Dental/microbiología , Pruebas de Sensibilidad Microbiana , Porphyromonas gingivalis/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA