Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 175(7): 1972-1988.e16, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550791

RESUMEN

In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.


Asunto(s)
Modelos Inmunológicos , Neoplasias Experimentales/inmunología , Organoides/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Animales , Antígeno B7-H1/inmunología , Técnicas de Cocultivo , Femenino , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Organoides/patología
2.
Nature ; 568(7753): 551-556, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971823

RESUMEN

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Asunto(s)
Inestabilidad de Microsatélites , Repeticiones de Microsatélite/genética , Neoplasias/genética , Mutaciones Letales Sintéticas/genética , Helicasa del Síndrome de Werner/genética , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Humanos , Modelos Genéticos , Neoplasias/patología , Interferencia de ARN , Proteína p53 Supresora de Tumor/metabolismo , Helicasa del Síndrome de Werner/deficiencia
3.
Small ; 19(49): e2302401, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37559167

RESUMEN

For the past century, trypsin has been the primary method of cell dissociation, largely without any major changes to the process. Enzymatic cell detachment strategies for large-scale cell culturing processes are popular but can be labor-intensive, potentially lead to the accumulation of genetic mutations, and produce large quantities of liquid waste. Therefore, engineering surfaces to lower cell adhesion strength could enable the next generation of cell culture surfaces for delicate primary cells and automated, high-throughput workflows. In this study, a process for creating microtextured polystyrene (PS) surfaces to measure the impact of microposts on the adhesion strength of cells is developed. Cell viability and proliferation assays show comparable results in two cancer cell lines between micropost surfaces and standard cell culture vessels. However, cell image analysis on microposts reveals that cell area decreases by half, and leads to an average twofold increase in cell length per area. Using a microfluidic-based method up to a seven times greater percentage of cells are removed from micropost surfaces than the flat control surfaces. These results show that micropost surfaces enable decreased cell adhesion strength while maintaining similar cell viabilities and proliferation as compared to flat PS surfaces.


Asunto(s)
Técnicas de Cultivo de Célula , Neoplasias , Adhesión Celular , Células Cultivadas , Fenómenos Físicos
4.
Nature ; 548(7667): 343-346, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28792927

RESUMEN

Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes-for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.


Asunto(s)
Resistencia a Antineoplásicos/genética , Sitios Genéticos/genética , Genoma Humano/genética , Indoles/farmacología , Melanoma/genética , ARN Largo no Codificante/genética , Sulfonamidas/farmacología , Activación Transcripcional/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Sitios Genéticos/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Indoles/uso terapéutico , Melanoma/tratamiento farmacológico , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonamidas/uso terapéutico , Sitio de Iniciación de la Transcripción , Vemurafenib
6.
Nature ; 547(7664): 453-457, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28678785

RESUMEN

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Cadherinas/metabolismo , Muerte Celular , Línea Celular Tumoral , Linaje de la Célula , Transdiferenciación Celular , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal , Humanos , Hierro/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/metabolismo , Melanoma/patología , Mesodermo/efectos de los fármacos , Mesodermo/enzimología , Mesodermo/metabolismo , Mesodermo/patología , Neoplasias/genética , Neoplasias/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica , Proteínas Proto-Oncogénicas B-raf/genética , Reproducibilidad de los Resultados , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
7.
Prostate ; 82(5): 584-597, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35084050

RESUMEN

BACKGROUND: Primary and metastatic prostate cancers have low mutation rates and recurrent alterations in a small set of genes, enabling targeted sequencing of prostate cancer-associated genes as an efficient approach to characterizing patient samples (compared to whole-exome and whole-genome sequencing). For example, targeted sequencing provides a flexible, rapid, and cost-effective method for genomic assessment of patient-derived cell lines to evaluate fidelity to initial patient tumor samples. METHODS: We developed a prostate cancer-specific targeted next-generation sequencing (NGS) panel to detect alterations in 62 prostate cancer-associated genes as well as recurring gene fusions with ETS family members, representing the majority of common alterations in prostate cancer. We tested this panel on primary prostate cancer tissues and blood biopsies from patients with metastatic prostate cancer. We generated patient-derived cell lines from primary prostate cancers using conditional reprogramming methods and applied targeted sequencing to evaluate the fidelity of these cell lines to the original patient tumors. RESULTS: The prostate cancer-specific panel identified biologically and clinically relevant alterations, including point mutations in driver oncogenes and ETS family fusion genes, in tumor tissues from 29 radical prostatectomy samples. The targeted panel also identified genomic alterations in cell-free DNA and circulating tumor cells (CTCs) from patients with metastatic prostate cancer, and in standard prostate cancer cell lines. We used the targeted panel to sequence our set of patient-derived cell lines; however, no prostate cancer-specific mutations were identified in the tumor-derived cell lines, suggesting preferential outgrowth of normal prostate epithelial cells. CONCLUSIONS: We evaluated a prostate cancer-specific targeted NGS panel to detect common and clinically relevant alterations (including ETS family gene fusions) in prostate cancer. The panel detected driver mutations in a diverse set of clinical samples of prostate cancer, including fresh-frozen tumors, cell-free DNA, CTCs, and cell lines. Targeted sequencing of patient-derived cell lines highlights the challenge of deriving cell lines from primary prostate cancers and the importance of genomic characterization to credential candidate cell lines. Our study supports that a prostate cancer-specific targeted sequencing panel provides an efficient, clinically feasible approach to identify genetic alterations across a spectrum of prostate cancer samples and cell lines.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de la Próstata , Línea Celular , Habilitación Profesional , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Mutación , Neoplasias de la Próstata/genética
8.
Nature ; 512(7512): 82-6, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25043044

RESUMEN

'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Amplificación de Genes/genética , Dosificación de Gen/genética , Genes myc/genética , Proteína Oncogénica p55(v-myc)/genética , ARN Largo no Codificante/genética , Animales , Transformación Celular Neoplásica , Cromosomas Humanos Par 8/genética , Modelos Animales de Enfermedad , Células HCT116 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Oncogénica p55(v-myc)/metabolismo , Fenotipo
9.
PLoS Genet ; 12(8): e1006242, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27494029

RESUMEN

Renal angiomyolipoma is a kidney tumor in the perivascular epithelioid (PEComa) family that is common in patients with Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) but occurs rarely sporadically. Though histologically benign, renal angiomyolipoma can cause life-threatening hemorrhage and kidney failure. Both angiomyolipoma and LAM have mutations in TSC2 or TSC1. However, the frequency and contribution of other somatic events in tumor development is unknown. We performed whole exome sequencing in 32 resected tumor samples (n = 30 angiomyolipoma, n = 2 LAM) from 15 subjects, including three with TSC. Two germline and 22 somatic inactivating mutations in TSC2 were identified, and one germline TSC1 mutation. Twenty of 32 (62%) samples showed copy neutral LOH (CN-LOH) in TSC2 or TSC1 with at least 8 different LOH regions, and 30 of 32 (94%) had biallelic loss of either TSC2 or TSC1. Whole exome sequencing identified a median of 4 somatic non-synonymous coding region mutations (other than in TSC2/TSC1), a mutation rate lower than nearly all other cancer types. Three genes with mutations were known cancer associated genes (BAP1, ARHGAP35 and SPEN), but they were mutated in a single sample each, and were missense variants with uncertain functional effects. Analysis of sixteen angiomyolipomas from a TSC subject showed both second hit point mutations and CN-LOH in TSC2, many of which were distinct, indicating that they were of independent clonal origin. However, three tumors had two shared mutations in addition to private somatic mutations, suggesting a branching evolutionary pattern of tumor development following initiating loss of TSC2. Our results indicate that TSC2 and less commonly TSC1 alterations are the primary essential driver event in angiomyolipoma/LAM, whereas other somatic mutations are rare and likely do not contribute to tumor development.


Asunto(s)
Angiomiolipoma/genética , Neoplasias Renales/genética , Linfangioleiomiomatosis/genética , Proteínas Supresoras de Tumor/genética , Adulto , Angiomiolipoma/patología , Carcinogénesis/genética , Exoma/genética , Femenino , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Renales/patología , Pérdida de Heterocigocidad/genética , Linfangioleiomiomatosis/patología , Masculino , Mutación , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
10.
Artículo en Inglés | MEDLINE | ID: mdl-38669694

RESUMEN

There is a high unmet need for early detection approaches for diffuse gastric cancer (DGC). We examined whether the stool proteome of mouse models of GC or individuals with hereditary diffuse GC (HDGC) have utility as biomarkers for early detection. Proteomic mass spectrometry of stool from a genetically engineered mouse model driven by oncogenic KrasG12D and loss of p53 and Cdh1 in gastric parietal cells (known as TCON mice) identified differentially abundant proteins compared to littermate controls. Immunoblot assays validated a panel of proteins including actinin alpha 4 (ACTN4), N-acylsphingosine amidohydrolase 2 (ASAH2), dipeptidyl peptidase 4 (DPP4), and valosin-containing protein (VCP) as enriched in TCON stool compared to littermate control stool. Immunofluorescence analysis of these proteins in TCON stomach sections revealed increased protein expression as compared to littermate controls. Proteomic mass spectrometry of stool obtained from HDGC patients with CDH1 mutations identified increased expression of ASAH2, DPP4, VCP, lactotransferrin (LTF), and tropomyosin-2 (TPM2) relative to stool from healthy sex and age-matched donors. Chemical inhibition of ASAH2 using C6-urea ceramide was toxic to GC cell lines and patient derived-GC organoids. This toxicity was reversed by adding downstream products of the S1P synthesis pathway, suggesting a dependency on ASAH2 activity in GC. An exploratory analysis of the HDGC stool microbiome identified features which correlated with patient tumors. Here we provide evidence supporting the potential of analyzing stool biomarkers for the early detection of DGC.

11.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589567

RESUMEN

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Asunto(s)
Hidrazinas , Neoplasias Renales , Triazoles , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Activo de Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular Tumoral , Apoptosis , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
12.
Nat Genet ; 55(10): 1709-1720, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37749246

RESUMEN

The paradigm of cancer-targeted therapies has focused largely on inhibition of critical pathways in cancer. Conversely, conditional activation of signaling pathways as a new source of selective cancer vulnerabilities has not been deeply characterized. In this study, we sought to systematically identify context-specific gene-activation-induced lethalities in cancer. To this end, we developed a method for gain-of-function genetic perturbations simultaneously across ~500 barcoded cancer cell lines. Using this approach, we queried the pan-cancer vulnerability landscape upon activating ten key pathway nodes, revealing selective activation dependencies of MAPK and PI3K pathways associated with specific biomarkers. Notably, we discovered new pathway hyperactivation dependencies in subsets of APC-mutant colorectal cancers where further activation of the WNT pathway by APC knockdown or direct ß-catenin overexpression led to robust antitumor effects in xenograft and patient-derived organoid models. Together, this study reveals a new class of conditional gene-activation dependencies in cancer.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Fosfatidilinositol 3-Quinasas , beta Catenina/genética , Vía de Señalización Wnt/genética , Proliferación Celular , Línea Celular Tumoral
13.
Nat Commun ; 13(1): 1606, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338135

RESUMEN

The cellular processes that govern tumor resistance to immunotherapy remain poorly understood. To gain insight into these processes, here we perform a genome-scale CRISPR activation screen for genes that enable human melanoma cells to evade cytotoxic T cell killing. Overexpression of four top candidate genes (CD274 (PD-L1), MCL1, JUNB, and B3GNT2) conferred resistance in diverse cancer cell types and mouse xenografts. By investigating the resistance mechanisms, we find that MCL1 and JUNB modulate the mitochondrial apoptosis pathway. JUNB encodes a transcription factor that downregulates FasL and TRAIL receptors, upregulates the MCL1 relative BCL2A1, and activates the NF-κB pathway. B3GNT2 encodes a poly-N-acetyllactosamine synthase that targets >10 ligands and receptors to disrupt interactions between tumor and T cells and reduce T cell activation. Inhibition of candidate genes sensitized tumor models to T cell cytotoxicity. Our results demonstrate that systematic gain-of-function screening can elucidate resistance pathways and identify potential targets for cancer immunotherapy.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Apoptosis/genética , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
Cell Biol Toxicol ; 26(2): 153-63, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19415183

RESUMEN

We investigated the effect of C-reactive protein (CRP) and sodium azide (NaN(3)) on endothelial Cx43 gap junctions. Human aortic endothelial cells (HAEC) were treated with (a) detoxified CRP, (b) detoxified dialyzed CRP, (c) detoxified dialyzed CRP plus NaN(3), (d) NaN(3), or (e) dialyzed NaN(3). The concentration of CRP in all preparations was fixed to 25 microg/ml and that of NaN(3) in the preparations of (c) to (e) was equivalent to that contained in the 25 microg/ml CRP purchased commercially. The results showed that both the expression of Cx43 protein and gap junctional communication function post-48-h incubation were reduced and inhibited by the detoxified CRP, NaN(3), or detoxified dialyzed CRP plus NaN(3), but not by the detoxified dialyzed CRP or dialyzed NaN(3). Reverse transcription-polymerase chain reaction analysis of cells treated for 72 h also showed a pattern of transcriptional regulation essentially the same as that for the proteins. We concluded that CRP does not have a significant effect on Cx43 gap junctions of HAEC, but NaN(3) inhibited the viability of cells and downregulate their junctions.


Asunto(s)
Proteína C-Reactiva/toxicidad , Conexina 43/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Uniones Comunicantes/efectos de los fármacos , Azida Sódica/toxicidad , Aorta/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Diálisis , Regulación hacia Abajo/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos
15.
Cardiovasc Res ; 79(3): 509-18, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18445604

RESUMEN

AIMS: We investigated the effects of connexin43 (Cx43) down-regulation on endothelial function. METHODS AND RESULTS: We used two different sequences of Cx43-specific small interference RNA (siRNA) to reduce de novo synthesis of Cx43 in human aortic endothelial cells and then examined the expression profiles, proliferation activity and viability, and angiogenic potential. The involvement of mitogen-activated protein kinase signalling pathways was analysed. In parallel, the effect of inhibition of gap-junctional communication by connexin-mimetic peptides was evaluated. During the down-regulation of Cx43 by the siRNA, the cells exhibited impaired gap-junctional communication, proliferation, viability, and angiogenic potential. In addition, plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor were up-regulated. Furthermore, c-jun N-terminal kinase (JNK) and its downstream target c-jun were activated, while caspase-3, p38, and extracellular signal-regulated kinase remained unchanged. Inhibition of JNK by SP600125 blocked the siRNA-induced increased expression of PAI-1 and partially recovered the impaired angiogenic potential. Short-term inhibition of Cx43 channels by connexin-mimetic peptides did not activate JNK. CONCLUSION: Down-regulation of Cx43 inhibits gap-junctional communication and activates endothelial cells to pathological status, as characterized by up-regulation of coagulatory molecules and impairment of proliferation, viability, and angiogenesis. The processes are associated with activation of JNK signalling pathways and rectified by inhibition of the activation. These results suggest that inadequate expression of Cx43 per se impairs endothelial function by the activation of stress-activated protein kinase.


Asunto(s)
Comunicación Celular , Conexina 43/metabolismo , Células Endoteliales/metabolismo , Uniones Comunicantes/metabolismo , Antracenos/farmacología , Comunicación Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Conexina 43/genética , Conexinas/farmacología , Regulación hacia Abajo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neovascularización Fisiológica , Oligopéptidos , Péptidos/farmacología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Factor de von Willebrand/metabolismo
16.
Methods Mol Biol ; 1907: 197-212, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30543002

RESUMEN

Over the last several decades, multiple recurrent chromosomal amplifications and deletions have been detected in a large number of cancers. These regions of amplification and deletion can encompass a few to several hundred genes. Determining which of these genes is causing the outgrowth of the cancer is difficult. Complicating the analysis is the fact that several genes within the affected chromosomal region may cooperate to promote tumorigenesis. In this protocol we describe a method of chromosomal engineering in mice that allows modeling of chromosomal duplications and deficiencies. This method faithfully recapitulates several aspects of chromosomal loss and gain in human cancers and can reveal cancer drivers difficult to identify by other means.


Asunto(s)
Aberraciones Cromosómicas , Marcación de Gen , Ingeniería Genética/métodos , Genómica/métodos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Animales , Humanos , Integrasas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Neoplasias/patología , Recombinación Genética
17.
Curr Opin Genet Dev ; 54: 33-40, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30928774

RESUMEN

Precision cancer medicine is based on the ability to predict the dependencies of a given tumor from its molecular makeup. These dependencies can be exploited with targeted, cytotoxic and/or immunity-inducing therapeutics. Ongoing efforts to perform genomic and cellular analyses on clinically annotated patient tumors are powerful, but bounded to existing therapies and focused cohorts. Here, we describe how living tumor material is increasingly being used in the generation of a systematic laboratory-based functional map of cancer dependencies (a 'Cancer Dependency Map'). In particular, we emphasize the important contributions of long-term cell models, emerging uses for short-term cell models and future potential for 'alpha cultures' that are mere hours or days from the cancer patient. Collecting research-grade cancer dependency data with each of these model formats could pave the way to ensure that the Map increasingly reflects all tumors. The integration of clinical genomics and preclinical functional genomics data should provide a powerful research platform to improve the accuracy of precision medicine predictions.


Asunto(s)
Técnicas Biosensibles , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Genómica , Humanos , Neoplasias/genética , Neoplasias/patología
19.
Nat Commun ; 10(1): 1617, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962421

RESUMEN

Clear-cell carcinomas (CCCs) are a histological group of highly aggressive malignancies commonly originating in the kidney and ovary. CCCs are distinguished by aberrant lipid and glycogen accumulation and are refractory to a broad range of anti-cancer therapies. Here we identify an intrinsic vulnerability to ferroptosis associated with the unique metabolic state in CCCs. This vulnerability transcends lineage and genetic landscape, and can be exploited by inhibiting glutathione peroxidase 4 (GPX4) with small-molecules. Using CRISPR screening and lipidomic profiling, we identify the hypoxia-inducible factor (HIF) pathway as a driver of this vulnerability. In renal CCCs, HIF-2α selectively enriches polyunsaturated lipids, the rate-limiting substrates for lipid peroxidation, by activating the expression of hypoxia-inducible, lipid droplet-associated protein (HILPDA). Our study suggests targeting GPX4 as a therapeutic opportunity in CCCs, and highlights that therapeutic approaches can be identified on the basis of cell states manifested by morphological and metabolic features in hard-to-treat cancers.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/patología , Glutatión Peroxidasa/metabolismo , Neoplasias Renales/patología , Proteínas de Neoplasias/metabolismo , Anciano , Animales , Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sistemas CRISPR-Cas/genética , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Glutatión Peroxidasa/genética , Células HEK293 , Humanos , Hierro/metabolismo , Neoplasias Renales/genética , Peroxidación de Lípido/genética , Masculino , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Clin Cancer Res ; 25(4): 1343-1357, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397176

RESUMEN

PURPOSE: Novel targeted therapeutics have transformed the care of subsets of patients with cancer. In pediatric malignancies, however, with simple tumor genomes and infrequent targetable mutations, there have been few new FDA-approved targeted drugs. The cyclin-dependent kinase (CDK)4/6 pathway recently emerged as a dependency in Ewing sarcoma. Given the heightened efficacy of this class with targeted drug combinations in other cancers, as well as the propensity of resistance to emerge with single agents, we aimed to identify genes mediating resistance to CDK4/6 inhibitors and biologically relevant combinations for use with CDK4/6 inhibitors in Ewing. EXPERIMENTAL DESIGN: We performed a genome-scale open reading frame (ORF) screen in 2 Ewing cell lines sensitive to CDK4/6 inhibitors to identify genes conferring resistance. Concurrently, we established resistance to a CDK4/6 inhibitor in a Ewing cell line. RESULTS: The ORF screen revealed IGF1R as a gene whose overexpression promoted drug escape. We also found elevated levels of phospho-IGF1R in our resistant Ewing cell line, supporting the relevance of IGF1R signaling to acquired resistance. In a small-molecule screen, an IGF1R inhibitor scored as synergistic with CDK4/6 inhibitor treatment. The combination of CDK4/6 inhibitors and IGF1R inhibitors was synergistic in vitro and active in mouse models. Mechanistically, this combination more profoundly repressed cell cycle and PI3K/mTOR signaling than either single drug perturbation. CONCLUSIONS: Taken together, these results suggest that IGF1R inhibitors activation is an escape mechanism to CDK4/6 inhibitors in Ewing sarcoma and that dual targeting of CDK4/6 inhibitors and IGF1R inhibitors provides a candidate synergistic combination for clinical application in this disease.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Receptor IGF Tipo 1/genética , Sarcoma de Ewing/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA