Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(22): 11157-11169, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37757479

RESUMEN

Precision walking (PW) incorporates precise step adjustments into regular walking patterns to navigate challenging surroundings. However, the brain processes involved in PW control, which encompass cortical regions and interregional interactions, are not fully understood. This study aimed to investigate the changes in regional activity and effective connectivity within the frontoparietal network associated with PW. Functional near-infrared spectroscopy data were recorded from adult subjects during treadmill walking tasks, including normal walking (NOR) and PW with visual cues, wherein the intercue distance was either fixed (FIX) or randomly varied (VAR) across steps. The superior parietal lobule (SPL), dorsal premotor area (PMd), supplementary motor area (SMA), and dorsolateral prefrontal cortex (dlPFC) were specifically targeted. The results revealed higher activities in SMA and left PMd, as well as left-to-right SPL connectivity, in VAR than in FIX. Activities in SMA and right dlPFC, along with dlPFC-to-SPL connectivity, were higher in VAR than in NOR. Overall, these findings provide insights into the roles of different brain regions and connectivity patterns within the frontoparietal network in facilitating gait control during PW, providing a useful baseline for further investigations into brain networks involved in locomotion.


Asunto(s)
Mapeo Encefálico , Señales (Psicología) , Adulto , Humanos , Caminata , Encéfalo , Espectroscopía Infrarroja Corta
2.
Brain Behav ; 12(7): e2681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701382

RESUMEN

INTRODUCTION: Interacting with the environment requires the planning and execution of reach-to-target movements along given reach trajectory paths. Human neural mechanisms for the motor planning of linear, or point-to-point, reaching movements are relatively well studied. However, the corresponding representations for curved and more complex reaching movements require further investigation. Additionally, the visual and proprioceptive feedback of hand positioning can be spatially and sequentially coupled in alignment (e.g., directly reaching for an object), termed coupled visuomotor feedback, or spatially decoupled (e.g., dragging the computer mouse forward to move the cursor upward), termed decoupled visuomotor feedback. During reach planning, visuomotor processing routes may differ across feedback types. METHODS: We investigated the involvement of the frontoparietal regions, including the superior parietal lobule (SPL), dorsal premotor cortex (PMd), and dorsolateral prefrontal cortex (dlPFC), in curved reach planning under different feedback conditions. Participants engaged in two delayed-response reaching tasks with identical starting and target position sets but different reach trajectory paths (linear or curved) under two feedback conditions (coupled or decoupled). Neural responses in frontoparietal regions were analyzed using a combination of functional near-infrared spectroscopy and electroencephalography. RESULTS: The results revealed that, regarding the cue period, curved reach planning had a higher hemodynamic response in the left SPL and bilateral PMd and a smaller high-beta power in the left parietal regions than linear reach planning. Regarding the delay period, higher hemodynamic responses during curved reach planning were observed in the right dlPFC for decoupled feedback than those for coupled feedback. CONCLUSION: These findings suggest the crucial involvement of both SPL and PMd activities in trajectory-path processing for curved reach planning. Moreover, the dlPFC may be especially involved in the planning of curved reaching movements under decoupled feedback conditions. Thus, this study provides insight into the neural mechanisms underlying reaching function via different feedback conditions.


Asunto(s)
Desempeño Psicomotor , Espectroscopía Infrarroja Corta , Electroencefalografía , Retroalimentación , Humanos , Movimiento/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA