Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biodivers Data J ; 9: e72651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803464

RESUMEN

Bats (Order: Chiroptera) is a recognised group of bioindicators due to their sensitivity towards alterations in their immediate surroundings. With the threats of climate change becoming more severe on a daily basis, it is reasonable to collect data on how bat diversity is influenced by elevation. This will be useful to predict and monitor possible upslope shifting of bat species due to increase in surrounding temperature or anthropogenic pressure. Hence, this study aims to uncover the bat diversity trend at different elevations in Crocker Range Park (CRP), Sabah, Malaysia. Bat trappings were conducted in four substations within this park, covering an elevation spectrum from 450 to 1900 m a.s.l. The overall sampling managed to capture 133 individuals of bats, predominantly Pteropodidae, with the addition of two new species locality records for CRP, Murinapeninsularis and Hypsugovondermanni. Simple linear regression analyses revealed that both bat diversity and richness have an inverse linear relationship with elevation. Likewise, the Pearson's correlation value, associating bat diversity with elevation, also shows that they have a negative relationship at r = -0.852. Heterogeneity of habitats explain this trend, as in the lower counterpart of CRP, lowland forests, which are richer in fruit and insect resources persist. Besides, lower land forests have better niche assortment, due to the distinctive layers stratification, allowing bats utilising different guilds to thrive in the same vegetation profile. This study further emphasises the role of CRP to protect most of the bat species found in Borneo, as well as serving as the baseline data for the future studies that look into the impact of temperature increment towards the upslope shifting of the bat population in CRP.

2.
PeerJ ; 7: e7858, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608182

RESUMEN

Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial factors (e.g., larger diversity in larger areas) are important. The lowland small mammal community was replaced in higher elevations (from above ~1,900 m) with montane communities consisting mainly of high elevation Borneo endemics. The positive correlation we find between elevation and endemism is concordant with a hypothesis that predicts higher endemism with topographical isolation. This supports lineage history and geographic history could be important drivers of species diversity in this region.

3.
Artículo en Inglés | MEDLINE | ID: mdl-25120441

RESUMEN

The fovea is a declivity of the retinal surface associated with maximum visual acuity. Foveae are widespread across vertebrates, but among mammals they are restricted to haplorhine primates (tarsiers, monkeys, apes, and humans), which are primarily diurnal. Thus primates have long contributed to the view that foveae are functional adaptations to diurnality. The foveae of tarsiers, which are nocturnal, are widely interpreted as vestigial traits and therefore evidence of a diurnal ancestry. This enduring premise is central to adaptive hypotheses on the origins of anthropoid primates; however, the question of whether tarsier foveae are functionless anachronisms or nocturnal adaptations remains open. To explore this question, we compared the diets of tarsiers (Tarsius) and scops owls (Otus), taxa united by numerous anatomical homoplasies, including foveate vision. A functional interpretation of these homoplasies predicts dietary convergence. We tested this prediction by analyzing stable isotope ratios that integrate dietary information. In Borneo and the Philippines, the stable carbon isotope compositions of Tarsius and Otus were indistinguishable, whereas the stable nitrogen isotope composition of Otus was marginally higher than that of Tarsius. Our results indicate that species in both genera consumed mainly ground-dwelling prey. Taken together, our findings support a functional interpretation of the many homoplasies shared by tarsiers and scops owls, including a retinal fovea. We suggest that the fovea might function similarly in tarsiers and scops owls by calibrating the auditory localization pathway. The integration of auditory localization and visual fixation during prey detection and acquisition might be critical at low light levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA