Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(15): 157401, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27127985

RESUMEN

In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.

2.
J Phys Condens Matter ; 35(30)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37075774

RESUMEN

We use terahertz time-domain spectroscopy to study gallium arsenide two-dimensional electron gas samples in external magnetic field. We measure cyclotron decay as a function of temperature from 0.4 to10Kand a quantum confinement dependence of the cyclotron decay time belowT0=1.2K. In the wider quantum well, we observe a dramatic enhancement in the decay time due to the reduction in dephasing and the concomitant enhancement of superradiant decay in these systems. We show that the dephasing time in 2DEG's depends on both the scatteringrateand also on the distribution of scattering angles.

3.
Phys Rev Lett ; 97(26): 266408, 2006 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-17280443

RESUMEN

The many-body formalism for dynamical mean-field theory is extended to treat nonequilibrium problems. We illustrate how the formalism works by examining the transient decay of the oscillating current that is driven by a large electric field turned on at time t=0. We show how the Bloch oscillations are quenched by the electron-electron interactions, and how their character changes dramatically for a Mott insulator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA