Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
ACS Omega ; 8(25): 22567-22574, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396206

RESUMEN

Fuel properties of oil-bearing kukui (Aleurites moluccana) nuts, a commonly found crop in Hawaii and tropical Pacific regions, were comprehensively studied to evaluate their potential for bioenergy production. Proximate and ultimate analyses, heating value, and elemental composition of the seed, shell, and de-oiled seed cake were determined across five sampling locations in Hawaii. The aged and freshly harvested kukui seeds were found to have similar oil contents, ranging from 61 to 64%wt. Aged seeds, however, have 2 orders of magnitude greater free fatty acids than those freshly harvested (50% vs 0.4%). The nitrogen content of the de-oiled kukui seed cake was found to be comparable to that of the soybean cake. Aging of kukui seeds can decrease the flashpoint temperature and increase the liquid-solid phase transition temperatures of kukui oil obtained. Mg and Ca are the major ash-forming elements present in the kukui shells, >80%wt of all metal elements detected, which may reduce deposition problems for thermochemical conversion in comparison with hazelnut, walnut, and almond shells. The study also revealed that kukui oil has similar characteristics to canola, indicating that it is well-suited for biofuel production.

2.
ACS Omega ; 6(43): 28890-28902, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34746581

RESUMEN

Biomass renewable energy has become a major target of the Thailand Alternative Energy Development Plan (AEDP) since the country's economy is largely based on agricultural production. Rice husk (RH) is one of the most common agricultural residues in Thailand. This research aims to investigate yields and properties of biochar produced from copyrolysis of RH and plastic (high-density polyethylene (HDPE)) at different ratios, temperatures, and holding times. For both individual and copyrolysis, the temperature variation generated more pronounced effects than the holding time variation on both biochar yields and properties. For individual pyrolysis of RH, the maximum biochar yield of ∼54 wt % was obtained at 400 °C. A shift in temperature from 400 to 600 °C resulted in RH biochars with higher fixed carbon (FC) and carbon (C) contents by ∼1.11-1.28 and 1.06-1.22 times, respectively, while undetectable changes in higher heating values (HHVs) were noticed. For copyrolysis, obvious negative synergistic effects were observed due to the radical interaction between the rich H content of HDPE and RH biochars, which resulted in lower biochar yields as compared to the theoretical estimation based on individual pyrolysis values. However, the addition of HDPE positively impacted the FC and C contents, especially when 10 and 20 wt % HDPE were added to the feedstock. Besides, higher HDPE blending ratios resulted in biochars with improved HHVs, and >1.5 times improvement in HHV was reported in the biochar with 50 wt % HDPE addition in comparison with RH biochar obtained under the same conditions. In summary, biochars generated in this study have the potential to be utilized as a solid fuel or soil amendment.

3.
ACS Omega ; 6(13): 9222-9233, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33842791

RESUMEN

Pongamia, a leguminous, oilseed-bearing tree, is a potential resource for renewable fuels in general and sustainable aviation fuel in particular. The present work characterizes physicochemical properties of reproductive materials (seeds and pods) from pongamia trees grown in different environments at five locations on the island of Oahu, Hawaii, USA. Proximate and ultimate analyses, heating value, and elemental composition of the seeds, pods, and de-oiled seed cake were determined. The oil content of the seeds and the properties of the oil were determined using American Society for Testing and Materials and American Oil Chemist's Society methods. The seed oil content ranged from 19 to 33 wt % across the trees and locations. Oleic (C18:1) was the fatty acid present in the greatest abundance (47 to 60 wt %), and unsaturated fatty acids accounted for 77 to 83 wt % of the oil. Pongamia oil was found to have similar characteristics as other plant seed oils (canola and jatropha) and would be expected to be well suited for hydroprocessed production of sustainable aviation fuel. Nitrogen-containing species is retained in the solid phase during oil extraction, and the de-oiled seed cake exhibited enrichment in the N content, ∼5 to 6%, in comparison with the parent seed. The pods would need further treatment before being used as fuel for combustion or gasification owing to the high potassium and chlorine contents.

4.
PLoS One ; 11(3): e0151368, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26978265

RESUMEN

The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.


Asunto(s)
Biocombustibles/análisis , Biomasa , Poaceae , Temperatura , Eucalyptus , Saccharum
5.
PLoS One ; 10(8): e0136511, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308860

RESUMEN

A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.


Asunto(s)
Biocombustibles , Biomasa , Reactores Biológicos , Calor , Pennisetum/metabolismo , Aceites de Plantas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA