RESUMEN
One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain-gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials.
Asunto(s)
Investigación Biomédica , COVID-19 , Humanos , Síndrome Post Agudo de COVID-19 , Hospitalización , Inmunoglobulina GRESUMEN
The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
Asunto(s)
Antígenos Virales/inmunología , Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito T/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Reino Unido , Vacunas Virales/inmunologíaRESUMEN
In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.
Asunto(s)
Sistema de Lectura Ribosómico , Seudouridina , ARN Mensajero , Animales , Humanos , Ratones , Vacuna BNT162/efectos adversos , Vacuna BNT162/genética , Vacuna BNT162/inmunología , Sistema de Lectura Ribosómico/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Seudouridina/análogos & derivados , Seudouridina/metabolismo , Ribosomas/metabolismo , Biosíntesis de ProteínasRESUMEN
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.
Asunto(s)
COVID-19/genética , COVID-19/fisiopatología , Enfermedad Crítica , 2',5'-Oligoadenilato Sintetasa/genética , COVID-19/patología , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 21/genética , Cuidados Críticos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Reposicionamiento de Medicamentos , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Pulmón/virología , Masculino , Familia de Multigenes/genética , Receptor de Interferón alfa y beta/genética , Receptores CCR2/genética , TYK2 Quinasa/genética , Reino UnidoRESUMEN
Enterovirus A71 (EV-A71) infection is a major cause of severe hand, foot and mouth disease (HFMD) in young children. The characteristics of EV-A71 neutralizing antibodies in HFMD patients are not well understood. In this study, we identified and cloned EV-A71-neutralizing antibodies by single cell RNA and B cell receptor sequencing of peripheral blood mononuclear cells. From 145 plasmablasts, we identified two IgG1 monoclonal antibodies (mAbs) and six IgM mAbs that neutralized EV-A71. Four of the IgM mAbs harbor germline variable sequences and neutralize EV-A71 potently. Two genetically similar IgM antibodies from two patients have recurrent heavy chain variable domain gene usage and similar complementarity-determining region 3 sequences. We mapped the residues of EV-A71 critical for neutralization through selection of virus variants resistant to antibody neutralization in the presence of neutralizing mAbs. The residues critical for neutralization are conserved among EV-A71 genotypes. Epitopes for the two genetically similar antibodies overlap with the SCARB2 binding site of EV-A71. We used escape variants to measure the epitope-specific antibody response in acute phase serum samples from EV-A71 infected HFMD patients. We found that these epitopes are immunogenic and contributed to the neutralizing antibody response against the virus. Our findings advance understanding of antibody response to EV-A71 infection in young children and have translational potential: the IgM mAbs could potentially be used for prevention or treatment of EV-A71 infections.
Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Preescolar , Enterovirus/genética , Enterovirus Humano A/genética , Leucocitos Mononucleares , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Inmunoglobulina M , Anticuerpos Monoclonales , Antígenos Virales/genéticaRESUMEN
BACKGROUND: While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. METHODS: We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days after symptom onset) or late (6-20 days after symptom onset) phase. RESULTS: Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. CONCLUSIONS: Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19.
Asunto(s)
COVID-19 , Citocinas , Inflamación , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/mortalidad , Masculino , Femenino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Citocinas/sangre , Anciano , Inflamación/inmunología , Inmunidad Mucosa , Carga Viral , Adulto , Quimiocinas/sangre , Índice de Severidad de la Enfermedad , Mucosa Nasal/inmunología , Mucosa Nasal/virologíaRESUMEN
BACKGROUND: Patients with cancer are at greater risk of dying from COVID-19 than many other patient groups. However, how this risk evolved during the pandemic remains unclear. We aimed to determine, on the basis of the UK national pandemic protocol, how factors influencing hospital mortality from COVID-19 could differentially affect patients undergoing cancer treatment. We also examined changes in hospital mortality and escalation of care in patients on cancer treatment during the first 2 years of the COVID-19 pandemic in the UK. METHODS: We conducted a prospective cohort study of patients aged older than 19 years and admitted to 306 health-care facilities in the UK with confirmed SARS-CoV-2 infection, who were enrolled in the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol (CCP) across the UK from April 23, 2020, to Feb 28, 2022; this analysis included all patients in the complete dataset when the study closed. The primary outcome was 30-day in-hospital mortality, comparing patients on cancer treatment and those without cancer. The study was approved by the South Central-Oxford C Research Ethics Committee in England (Ref: 13/SC/0149) and the Scotland A Research Ethics Committee (Ref 20/SS/0028), and is registered on the ISRCTN Registry (ISRCTN66726260). FINDINGS: 177â871 eligible adult patients either with no history of cancer (n=171â303) or on cancer treatment (n=6568) were enrolled; 93â205 (52·4%) were male, 84â418 (47·5%) were female, and in 248 (13·9%) sex or gender details were not specified or data were missing. Patients were followed up for a median of 13 (IQR 6-21) days. Of the 6568 patients receiving cancer treatment, 2080 (31·7%) died at 30 days, compared with 30â901 (18·0%) of 171â303 patients without cancer. Patients aged younger than 50 years on cancer treatment had the highest age-adjusted relative risk (hazard ratio [HR] 5·2 [95% CI 4·0-6·6], p<0·0001; vs 50-69 years 2·4 [2·2-2·6], p<0·0001; 70-79 years 1·8 [1·6-2·0], p<0·0001; and >80 years 1·5 [1·3-1·6], p<0·0001) but a lower absolute risk (51 [6·7%] of 763 patients <50 years died compared with 459 [30·2%] of 1522 patients aged >80 years). In-hospital mortality decreased for all patients during the pandemic but was higher for patients on cancer treatment than for those without cancer throughout the study period. INTERPRETATION: People with cancer have a higher risk of mortality from COVID-19 than those without cancer. Patients younger than 50 years with cancer treatment have the highest relative risk of death. Continued action is needed to mitigate the poor outcomes in patients with cancer, such as through optimising vaccination, long-acting passive immunisation, and early access to therapeutics. These findings underscore the importance of the ISARIC-WHO pandemic preparedness initiative. FUNDING: National Institute for Health Research and the Medical Research Council.
Asunto(s)
COVID-19 , Mortalidad Hospitalaria , Neoplasias , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/epidemiología , Neoplasias/mortalidad , Neoplasias/terapia , Masculino , Femenino , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Reino Unido/epidemiología , Adulto , Anciano de 80 o más Años , PandemiasRESUMEN
Immune responses to primary COVID-19 vaccination were investigated in 58 patients with follicular lymphoma (FL) as part of the PETReA trial of frontline therapy (EudraCT 2016-004010-10). COVID-19 vaccines (BNT162b2 or ChAdOx1) were administered before, during or after cytoreductive treatment comprising rituximab (depletes B cells) and either bendamustine (depletes CD4+ T cells) or cyclophosphamide-based chemotherapy. Blood samples obtained after vaccine doses 1 and 2 (V1, V2) were analysed for antibodies and T cells reactive to the SARS-CoV-2 spike protein using the Abbott Architect and interferon-gamma ELISpot assays respectively. Compared to 149 healthy controls, patients with FL exhibited lower antibody but preserved T-cell responses. Within the FL cohort, multivariable analysis identified low pre-treatment serum IgA levels and V2 administration during induction or maintenance treatment as independent determinants of lower antibody and higher T-cell responses, and bendamustine and high/intermediate FLIPI-2 score as additional determinants of a lower antibody response. Several clinical scenarios were identified where dichotomous immune responses were estimated with >95% confidence based on combinations of predictive variables. In conclusion, the immunogenicity of COVID-19 vaccines in FL patients is influenced by multiple disease- and treatment-related factors, among which B-cell depletion showed differential effects on antibody and T-cell responses.
Asunto(s)
Clorhidrato de Bendamustina , COVID-19 , Linfoma Folicular , SARS-CoV-2 , Humanos , Linfoma Folicular/inmunología , Linfoma Folicular/tratamiento farmacológico , Linfoma Folicular/terapia , Femenino , Masculino , Persona de Mediana Edad , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Anciano , Clorhidrato de Bendamustina/uso terapéutico , Clorhidrato de Bendamustina/administración & dosificación , Adulto , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Anticuerpos Antivirales/sangre , Rituximab/uso terapéutico , Rituximab/administración & dosificación , Vacuna BNT162/administración & dosificación , Vacuna BNT162/inmunología , Inmunogenicidad Vacunal , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inmunoterapia/métodos , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
OBJECTIVE: Obesity and type 2 diabetes (DM) are risk factors for severe coronavirus disease 2019 (COVID-19) outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with overweight/obesity (Ov/Ob, BMI ≥â 23 kg/m2) and DM in Bangladesh. METHODS: In this cross-sectional study, SARS-CoV-2-specific antibody and T-cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. RESULTS: In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T-cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, Ov/Ob was associated with decreased neutralizing antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8â +â T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T-cell responses after adjustment for obesity and other confounders. CONCLUSION: Ov/Ob is associated with lower neutralizing antibody levels and higher T-cell responses to SARS-CoV-2 post-COVID-19 recovery, while antibody or T-cell responses remain unaltered in DM.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Diabetes Mellitus Tipo 2 , Obesidad , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/complicaciones , Obesidad/inmunología , Obesidad/complicaciones , Masculino , Femenino , SARS-CoV-2/inmunología , Adulto , Estudios Transversales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Bangladesh , Inmunidad CelularRESUMEN
Acute encephalitis syndrome (AES) in children poses a significant public health challenge in India. This study aims to explore the utility of host inflammatory mediators and neurofilament (NfL) levels in distinguishing etiologies, assessing disease severity, and predicting outcomes in AES. We assessed 12 mediators in serum (n = 58) and 11 in cerebrospinal fluid (CSF) (n = 42) from 62 children with AES due to scrub typhus, viral etiologies, and COVID-associated multisystem inflammatory syndrome (MIS-C) in Southern India. Additionally, NfL levels in serum (n = 20) and CSF (n = 18) were examined. Clinical data, including Glasgow coma scale (GCS) and Liverpool outcome scores, were recorded. Examining serum and CSF markers in the three AES etiology groups revealed notable distinctions, with scrub typhus differing significantly from viral and MIS-C causes. Viral causes had elevated serum CCL11 and CCL2 compared with scrub typhus, while MIS-C cases showed higher HGF levels than scrub typhus. However, CSF analysis showed a distinct pattern with the scrub typhus group exhibiting elevated levels of IL-1RA, IL-1ß, and TNF compared with MIS-C, and lower CCL2 levels compared with the viral group. Modeling the characteristic features, we identified that age ≥3 years with serum CCL11 < 180 pg/mL effectively distinguished scrub typhus from other AES causes. Elevated serum CCL11, HGF, and IL-6:IL-10 ratio were associated with poor outcomes (p = 0.038, 0.005, 0.02). Positive CSF and serum NfL correlation, and negative GCS and serum NfL correlation were observed. Median NfL levels were higher in children with abnormal admission GCS and poor outcomes. Measuring immune mediators and brain injury markers in AES provides valuable diagnostic insights, with the potential to facilitate rapid diagnosis and prognosis. The correlation between CSF and serum NfL, along with distinctive serum cytokine profiles across various etiologies, indicates the adequacy of blood samples alone for assessment and monitoring. The association of elevated levels of CCL11, HGF, and an increased IL-6:IL-10 ratio with adverse outcomes suggests promising avenues for therapeutic exploration, warranting further investigation.
Asunto(s)
Encefalopatía Aguda Febril , Biomarcadores , COVID-19 , Tifus por Ácaros , Síndrome de Respuesta Inflamatoria Sistémica , Humanos , India/epidemiología , Niño , Masculino , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Femenino , COVID-19/complicaciones , COVID-19/sangre , COVID-19/diagnóstico , Preescolar , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/complicaciones , Tifus por Ácaros/sangre , Tifus por Ácaros/líquido cefalorraquídeo , Encefalopatía Aguda Febril/sangre , Encefalopatía Aguda Febril/etiología , Encefalopatía Aguda Febril/diagnóstico , Adolescente , Lactante , Citocinas/sangre , Citocinas/líquido cefalorraquídeoRESUMEN
BACKGROUND: The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. RESULTS: We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3-5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28-ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ([Formula: see text] = 0.174, p = 0.043), with a major influence being disease severity ([Formula: see text] = 0.188, p = 0.01). CONCLUSIONS: Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.
RESUMEN
Japanese encephalitis virus is a leading cause of neurological infection in the Asia-Pacific region with no means of detection in more remote areas. We aimed to test the hypothesis of a Japanese encephalitis (JE) protein signature in human cerebrospinal fluid (CSF) that could be harnessed in a rapid diagnostic test (RDT), contribute to understanding the host response and predict outcome during infection. Liquid chromatography and tandem mass spectrometry (LC-MS/MS), using extensive offline fractionation and tandem mass tag labeling (TMT), enabled comparison of the deep CSF proteome in JE vs other confirmed neurological infections (non-JE). Verification was performed using data-independent acquisition (DIA) LC-MS/MS. 5,070 proteins were identified, including 4,805 human proteins and 265 pathogen proteins. Feature selection and predictive modeling using TMT analysis of 147 patient samples enabled the development of a nine-protein JE diagnostic signature. This was tested using DIA analysis of an independent group of 16 patient samples, demonstrating 82% accuracy. Ultimately, validation in a larger group of patients and different locations could help refine the list to 2-3 proteins for an RDT. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034789 and 10.6019/PXD034789.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Humanos , Encefalitis Japonesa/diagnóstico , Cromatografía Liquida/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Proteoma/análisisRESUMEN
BACKGROUND: Immunocompromised patients may be at higher risk of mortality if hospitalised with Coronavirus Disease 2019 (COVID-19) compared with immunocompetent patients. However, previous studies have been contradictory. We aimed to determine whether immunocompromised patients were at greater risk of in-hospital death and how this risk changed over the pandemic. METHODS AND FINDINGS: We included patients > = 19 years with symptomatic community-acquired COVID-19 recruited to the ISARIC WHO Clinical Characterisation Protocol UK prospective cohort study. We defined immunocompromise as immunosuppressant medication preadmission, cancer treatment, organ transplant, HIV, or congenital immunodeficiency. We used logistic regression to compare the risk of death in both groups, adjusting for age, sex, deprivation, ethnicity, vaccination, and comorbidities. We used Bayesian logistic regression to explore mortality over time. Between 17 January 2020 and 28 February 2022, we recruited 156,552 eligible patients, of whom 21,954 (14%) were immunocompromised. In total, 29% (n = 6,499) of immunocompromised and 21% (n = 28,608) of immunocompetent patients died in hospital. The odds of in-hospital mortality were elevated for immunocompromised patients (adjusted OR 1.44, 95% CI [1.39, 1.50], p < 0.001). Not all immunocompromising conditions had the same risk, for example, patients on active cancer treatment were less likely to have their care escalated to intensive care (adjusted OR 0.77, 95% CI [0.7, 0.85], p < 0.001) or ventilation (adjusted OR 0.65, 95% CI [0.56, 0.76], p < 0.001). However, cancer patients were more likely to die (adjusted OR 2.0, 95% CI [1.87, 2.15], p < 0.001). Analyses were adjusted for age, sex, socioeconomic deprivation, comorbidities, and vaccination status. As the pandemic progressed, in-hospital mortality reduced more slowly for immunocompromised patients than for immunocompetent patients. This was particularly evident with increasing age: the probability of the reduction in hospital mortality being less for immunocompromised patients aged 50 to 69 years was 88% for men and 83% for women, and for those >80 years was 99% for men and 98% for women. The study is limited by a lack of detailed drug data prior to admission, including steroid doses, meaning that we may have incorrectly categorised some immunocompromised patients as immunocompetent. CONCLUSIONS: Immunocompromised patients remain at elevated risk of death from COVID-19. Targeted measures such as additional vaccine doses, monoclonal antibodies, and nonpharmaceutical preventive interventions should be continually encouraged for this patient group. TRIAL REGISTRATION: ISRCTN 66726260.
Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , SARS-CoV-2 , Estudios Prospectivos , Mortalidad Hospitalaria , Teorema de Bayes , Huésped Inmunocomprometido , Reino Unido/epidemiología , Organización Mundial de la SaludRESUMEN
BACKGROUND: We hypothesised that the clinical characteristics of hospitalised children and young people (CYP) with SARS-CoV-2 in the UK second wave (W2) would differ from the first wave (W1) due to the alpha variant (B.1.1.7), school reopening and relaxation of shielding. METHODS: Prospective multicentre observational cohort study of patients <19 years hospitalised in the UK with SARS-CoV-2 between 17/01/20 and 31/01/21. Clinical characteristics were compared between W1 and W2 (W1 = 17/01/20-31/07/20,W2 = 01/08/20-31/01/21). RESULTS: 2044 CYP < 19 years from 187 hospitals. 427/2044 (20.6%) with asymptomatic/incidental SARS-CoV-2 were excluded from main analysis. 16.0% (248/1548) of symptomatic CYP were admitted to critical care and 0.8% (12/1504) died. 5.6% (91/1617) of symptomatic CYP had Multisystem Inflammatory Syndrome in Children (MIS-C). After excluding CYP with MIS-C, patients in W2 had lower Paediatric Early Warning Scores (PEWS, composite vital sign score), lower antibiotic use and less respiratory and cardiovascular support than W1. The proportion of CYP admitted to critical care was unchanged. 58.0% (938/1617) of symptomatic CYP had no reported comorbidity. Patients without co-morbidities were younger (42.4%, 398/938, <1 year), had lower PEWS, shorter length of stay and less respiratory support. CONCLUSIONS: We found no evidence of increased disease severity in W2 vs W1. A large proportion of hospitalised CYP had no comorbidity. IMPACT: No evidence of increased severity of COVID-19 admissions amongst children and young people (CYP) in the second vs first wave in the UK, despite changes in variant, relaxation of shielding and return to face-to-face schooling. CYP with no comorbidities made up a significant proportion of those admitted. However, they had shorter length of stays and lower treatment requirements than CYP with comorbidities once those with MIS-C were excluded. At least 20% of CYP admitted in this cohort had asymptomatic/incidental SARS-CoV-2 infection. This paper was presented to SAGE to inform CYP vaccination policy in the UK.
Asunto(s)
COVID-19 , Infecciones por Coronavirus , Humanos , Niño , Adolescente , SARS-CoV-2 , COVID-19/epidemiología , Pandemias , Estudios Prospectivos , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Rapid determination of an individual's antibody status can be beneficial in understanding an individual's immune response to SARS-CoV-2 and for initiation of therapies that are only deemed effective in sero-negative individuals. Antibody lateral flow tests (LFTs) have potential to address this need as a rapid, point of care test. METHODS: Here we present a proof-of-concept evaluation of eight LFT brands using sera from 95 vaccinated individuals to determine sensitivity for detecting vaccination generated antibodies. Samples were analysed on eight different brands of antibody LFT and an automated chemiluminescent microparticle immunoassay (CMIA) that identifies anti-spike antibodies which was used as our reference standard. RESULTS: All 95 (100%) participants tested positive for anti-spike antibodies by the chemiluminescent microparticle immunoassay (CMIA) reference standard post-dose two of their SARS-CoV-2 vaccine: BNT162b2 (Pfizer/BioNTech, n = 60), AZD1222 (AstraZeneca, n = 31), mRNA-1273 (Moderna, n = 2) and Undeclared Vaccine Brand (n = 2). Sensitivity increased from dose one to dose two in six out of eight LFTs with three tests achieving 100% sensitivity at dose two in detecting anti-spike antibodies. CONCLUSIONS: These tests are demonstrated to be highly sensitive to detect raised antibody levels in vaccinated individuals. RDTs are low cost and rapid alternatives to ELISA based systems.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , ChAdOx1 nCoV-19 , COVID-19/diagnóstico , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , VacunaciónRESUMEN
BACKGROUND: COVID-19 is a multisystem disease and patients who survive might have in-hospital complications. These complications are likely to have important short-term and long-term consequences for patients, health-care utilisation, health-care system preparedness, and society amidst the ongoing COVID-19 pandemic. Our aim was to characterise the extent and effect of COVID-19 complications, particularly in those who survive, using the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK. METHODS: We did a prospective, multicentre cohort study in 302 UK health-care facilities. Adult patients aged 19 years or older, with confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 were included in the study. The primary outcome of this study was the incidence of in-hospital complications, defined as organ-specific diagnoses occurring alone or in addition to any hallmarks of COVID-19 illness. We used multilevel logistic regression and survival models to explore associations between these outcomes and in-hospital complications, age, and pre-existing comorbidities. FINDINGS: Between Jan 17 and Aug 4, 2020, 80â388 patients were included in the study. Of the patients admitted to hospital for management of COVID-19, 49·7% (36â367 of 73â197) had at least one complication. The mean age of our cohort was 71·1 years (SD 18·7), with 56·0% (41â025 of 73â197) being male and 81·0% (59â289 of 73â197) having at least one comorbidity. Males and those aged older than 60 years were most likely to have a complication (aged ≥60 years: 54·5% [16â579 of 30â416] in males and 48·2% [11â707 of 24â288] in females; aged <60 years: 48·8% [5179 of 10â609] in males and 36·6% [2814 of 7689] in females). Renal (24·3%, 17â752 of 73â197), complex respiratory (18·4%, 13â486 of 73â197), and systemic (16·3%, 11â895 of 73â197) complications were the most frequent. Cardiovascular (12·3%, 8973 of 73â197), neurological (4·3%, 3115 of 73â197), and gastrointestinal or liver (0·8%, 7901 of 73â197) complications were also reported. INTERPRETATION: Complications and worse functional outcomes in patients admitted to hospital with COVID-19 are high, even in young, previously healthy individuals. Acute complications are associated with reduced ability to self-care at discharge, with neurological complications being associated with the worst functional outcomes. COVID-19 complications are likely to cause a substantial strain on health and social care in the coming years. These data will help in the design and provision of services aimed at the post-hospitalisation care of patients with COVID-19. FUNDING: National Institute for Health Research and the UK Medical Research Council.
Asunto(s)
COVID-19/complicaciones , Protocolos Clínicos/normas , Comorbilidad , Mortalidad Hospitalaria , Hospitalización , Factores de Edad , Anciano , COVID-19/epidemiología , Enfermedades Cardiovasculares , Femenino , Hospitales , Humanos , Masculino , Enfermedades del Sistema Nervioso , Estudios Prospectivos , Enfermedades Respiratorias , SARS-CoV-2 , Reino Unido/epidemiología , Organización Mundial de la SaludRESUMEN
PURPOSE: To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19. METHODS: Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups. RESULTS: 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, -0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions. CONCLUSION: Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making. TRIAL REGISTRATION NUMBER: ISRCTN66726260.
Asunto(s)
COVID-19 , Adolescente , Adulto , COVID-19/terapia , Mortalidad Hospitalaria , Humanos , Estudios Observacionales como Asunto , Pronóstico , SARS-CoV-2 , Medicina Estatal , Organización Mundial de la SaludRESUMEN
Normalization to account for variation in urinary dilution is crucial for interpretation of urine metabolic profiles. Probabilistic quotient normalization (PQN) is used routinely in metabolomics but is sensitive to systematic variation shared across a large proportion of the spectral profile (>50%). Where 1H nuclear magnetic resonance (NMR) spectroscopy is employed, the presence of urinary protein can elevate the spectral baseline and substantially impact the resulting profile. Using 1H NMR profile measurements of spot urine samples collected from hospitalized COVID-19 patients in the ISARIC 4C study, we determined that PQN coefficients are significantly correlated with observed protein levels (r2 = 0.423, p < 2.2 × 10-16). This correlation was significantly reduced (r2 = 0.163, p < 2.2 × 10-16) when using a computational method for suppression of macromolecular signals known as small molecule enhancement spectroscopy (SMolESY) for proteinic baseline removal prior to PQN. These results highlight proteinuria as a common yet overlooked source of bias in 1H NMR metabolic profiling studies which can be effectively mitigated using SMolESY or other macromolecular signal suppression methods before estimation of normalization coefficients.
Asunto(s)
COVID-19 , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Espectroscopía de Protones por Resonancia MagnéticaRESUMEN
T-cell responses to SARS-CoV-2 following infection and vaccination are less characterized than antibody responses, due to a more complex experimental pathway. We measured T-cell responses in 108 healthcare workers (HCWs) using the commercialized Oxford Immunotec T-SPOT Discovery SARS-CoV-2 assay service (OI T-SPOT) and the PITCH ELISpot protocol established for academic research settings. Both assays detected T-cell responses to SARS-CoV-2 spike, membrane, and nucleocapsid proteins. Responses were significantly lower when reported by OI T-SPOT than by PITCH ELISpot. Four weeks after two doses of either Pfizer/BioNTech BNT162b or ChAdOx1 nCoV-19 AZD1222 vaccine, the responder rate was 63% for OI T-SPOT Panels 1 + 2 (peptides representing SARS-CoV-2 spike protein excluding regions present in seasonal coronaviruses), 69% for OI T-SPOT Panel 14 (peptides representing the entire SARS-CoV-2 spike), and 94% for the PITCH ELISpot total spike. The two OI T-SPOT panels correlated strongly with each other showing that either readout quantifies spike-specific T-cell responses, although the correlation between the OI T-SPOT panels and the PITCH ELISpot total spike was moderate. The standardization, relative scalability, and longer interval between blood acquisition and processing are advantages of the commercial OI T-SPOT assay. However, the OI T-SPOT assay measures T-cell responses at a significantly lower magnitude compared to the PITCH ELISpot assay, detecting T-cell responses in a lower proportion of vaccinees. This has implications for the reporting of low-level T-cell responses that may be observed in patient populations and for the assessment of T-cell durability after vaccination.
Asunto(s)
Vacuna BNT162 , COVID-19 , ChAdOx1 nCoV-19 , Linfocitos T , Anticuerpos Antivirales , Vacuna BNT162/inmunología , COVID-19/prevención & control , ChAdOx1 nCoV-19/inmunología , Personal de Salud , Humanos , Péptidos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Linfocitos T/inmunología , VacunaciónRESUMEN
BACKGROUND: Our study examines if SARS-CoV-2 infections varied by vaccination status, if an individual had previously tested positive and by neighbourhood socioeconomic deprivation across the Delta and Omicron epidemic waves of SARS-CoV-2. METHODS: Population cohort study using electronic health records for 2.7 M residents in Cheshire and Merseyside, England (3rd June 2021 to 1st March 2022). Our outcome variable was registered positive test for SARS-CoV-2. Explanatory variables were vaccination status, previous registered positive test and neighbourhood socioeconomic deprivation. Cox regression models were used to analyse associations. RESULTS: Originally higher SARS-CoV-2 rates in the most socioeconomically deprived neighbourhoods changed to being higher in the least deprived neighbourhoods from the 1st September 2021, and were inconsistent during the Omicron wave. Individuals who were fully vaccinated (two doses) were associated with fewer registered positive tests (e.g., individuals engaged in testing between 1st September and 27th November 2021-Hazards Ratio (HR) = 0.48, 95% Confidence Intervals (CIs) = 0.47-0.50. Individuals with a previous registered positive test were also less likely to have a registered positive test (e.g., individuals engaged in testing between 1st September and 27th November 2021-HR = 0.16, 95% CIs = 0.15-0.18. However, the Omicron period saw smaller effect sizes for both vaccination status and previous registered positive test. CONCLUSIONS: Changing patterns of SARS-CoV-2 infections during the Delta and Omicron waves reveals a dynamic pandemic that continues to affect diverse communities in sometimes unexpected ways.