Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 598-616, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269178

RESUMEN

RNA-binding proteins (RBPs) participate in a diverse set of biological processes in plants, but their functions and underlying mechanisms in plant-pathogen interactions are largely unknown. We previously showed that Arabidopsis thaliana BPA1-LIKE PROTEIN3 (BPL3) belongs to a conserved plant RBP family and negatively regulates reactive oxygen species (ROS) accumulation and cell death under biotic stress. In this study, we demonstrate that BPL3 suppresses FORKED-LIKE7 (FL7) transcript accumulation and raises levels of the cis-natural antisense long non-coding RNA (lncRNA) of FL7 (nalncFL7). FL7 positively regulated plant immunity to Phytophthora capsici while nalncFL7 negatively regulated resistance. We also showed that BPL3 directly binds to and stabilizes nalncFL7. Moreover, nalncFL7 suppressed accumulation of FL7 transcripts. Furthermore, FL7 interacted with HIGHLY ABA-INDUCED PP2C1 (HAI1), a type 2C protein phosphatase, and inhibited HAI1 phosphatase activity. By suppressing HAI1 activity, FL7 increased the phosphorylation levels of MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3) and MPK6, thus enhancing immunity responses. BPL3 and FL7 are conserved in all plant species tested, but the BPL3-nalncFL7-FL7 cascade was specific to the Brassicaceae. Thus, we identified a conserved BPL3-nalncFL7-FL7 cascade that coordinates plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , ARN Largo no Codificante , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inmunidad de la Planta/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
2.
Nature ; 581(7807): 199-203, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32404997

RESUMEN

Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens1-3. Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants4. The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS-INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2-BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Inmunidad de la Planta/inmunología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Arabidopsis/enzimología , Endocitosis , Ligandos , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Fosforilación , Proteínas Quinasas/metabolismo
3.
Cell ; 142(2): 284-95, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655469

RESUMEN

Pathogens of plants and animals produce effector proteins that are transferred into the cytoplasm of host cells to suppress host defenses. One type of plant pathogens, oomycetes, produces effector proteins with N-terminal RXLR and dEER motifs that enable entry into host cells. We show here that effectors of another pathogen type, fungi, contain functional variants of the RXLR motif, and that the oomycete and fungal RXLR motifs enable binding to the phospholipid, phosphatidylinositol-3-phosphate (PI3P). We find that PI3P is abundant on the outer surface of plant cell plasma membranes and, furthermore, on some animal cells. All effectors could also enter human cells, suggesting that PI3P-mediated effector entry may be very widespread in plant, animal and human pathogenesis. Entry into both plant and animal cells involves lipid raft-mediated endocytosis. Blocking PI3P binding inhibited effector entry, suggesting new therapeutic avenues.


Asunto(s)
Interacciones Huésped-Patógeno , Oomicetos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Datos de Secuencia Molecular , Plantas/microbiología
4.
Annu Rev Microbiol ; 73: 667-696, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31226025

RESUMEN

Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.


Asunto(s)
Interacciones Huésped-Patógeno , Oomicetos , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Apoptosis , Coevolución Biológica , Regulación de la Expresión Génica , Evasión Inmune , Oomicetos/metabolismo , Oomicetos/patogenicidad , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/inmunología , Plantas/microbiología , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolismo Secundario , Sesquiterpenos/metabolismo , Transducción de Señal , Fitoalexinas
5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658365

RESUMEN

Oomycete pathogens such as Phytophthora secrete a repertoire of effectors into host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By coimmunoprecipitation (Co-IP), gel infiltration, and isothermal titration calorimetry (ITC) assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor. Altogether, this study highlights a virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This study unravels the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.


Asunto(s)
Complejos Multiproteicos/química , Phytophthora/química , Ubiquitina-Proteína Ligasas/química , Complejos Multiproteicos/metabolismo , Phytophthora/metabolismo , Enfermedades de las Plantas/microbiología , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(44): 27685-27693, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33082226

RESUMEN

Hosts and pathogens are engaged in a continuous evolutionary struggle for physiological dominance. A major site of this struggle is the apoplast. In Phytophthora sojae-soybean interactions, PsXEG1, a pathogen-secreted apoplastic endoglucanase, is a key focal point of this struggle, and the subject of two layers of host defense and pathogen counterdefense. Here, we show that N-glycosylation of PsXEG1 represents an additional layer of this coevolutionary struggle, protecting PsXEG1 against a host apoplastic aspartic protease, GmAP5, that specifically targets PsXEG1. This posttranslational modification also attenuated binding by the previously described host inhibitor, GmGIP1. N-glycosylation of PsXEG1 at N174 and N190 inhibited binding and degradation by GmAP5 and was essential for PsXEG1's full virulence contribution, except in GmAP5-silenced soybeans. Silencing of GmAP5 reduced soybean resistance against WT P. sojae but not against PsXEG1 deletion strains of P. sojae. The crucial role of N-glycosylation within the three layers of defense and counterdefense centered on PsXEG1 highlight the critical importance of this conserved apoplastic effector and its posttranslational modification in Phytophthora-host coevolutionary conflict.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Celulasa/metabolismo , Glycine max/microbiología , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Celulasa/genética , Resistencia a la Enfermedad/genética , Técnicas de Silenciamiento del Gen , Glicosilación , Interacciones Huésped-Patógeno/genética , Phytophthora/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteolisis , Glycine max/enzimología , Glycine max/genética , Virulencia
7.
PLoS Genet ; 16(3): e1008646, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150559

RESUMEN

Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.


Asunto(s)
Centrómero/genética , Oomicetos/genética , Phytophthora/genética , Alveolados/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Cromatina/genética , Inmunoprecipitación de Cromatina/métodos , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Heterocromatina/genética , Histonas/genética , Cinetocoros/metabolismo , Cinetocoros/fisiología , Phytophthora/metabolismo , Rhizaria/genética , Estramenopilos/genética
8.
Emerg Infect Dis ; 28(6): 1101-1109, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452383

RESUMEN

Genomic surveillance has emerged as a critical monitoring tool during the SARS-CoV-2 pandemic. Wastewater surveillance has the potential to identify and track SARS-CoV-2 variants in the community, including emerging variants. We demonstrate the novel use of multilocus sequence typing to identify SARS-CoV-2 variants in wastewater. Using this technique, we observed the emergence of the B.1.351 (Beta) variant in Linn County, Oregon, USA, in wastewater 12 days before this variant was identified in individual clinical specimens. During the study period, we identified 42 B.1.351 clinical specimens that clustered into 3 phylogenetic clades. Eighteen of the 19 clinical specimens and all wastewater B.1.351 specimens from Linn County clustered into clade 1. Our results provide further evidence of the reliability of wastewater surveillance to report localized SARS-CoV-2 sequence information.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Oregon/epidemiología , Filogenia , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
9.
Fungal Genet Biol ; 161: 103695, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513256

RESUMEN

Being found in all eukaryotes investigated, acyl-CoA-binding proteins (ACBPs) participate in lipid metabolism via specifically binding acyl-CoA esters with high affinity. The structures and functions of ACBP family proteins have been extensively described in yeasts, fungi, plants and mammals, but not oomycetes. In the present study, seven ACBP genes named PsACBP1-7 were identified from the genome of Phytophthora sojae, an oomycete pathogen of soybean. CRISPR-Cas9 knockout mutants targeting PsACBP1 and PsACBP2 were created for phenotypic assays. PsACBP1 knockout led to defects in sporangia production and virulence. PsACBP2 knockout mutants exhibited impaired vegetative growth, zoospore production, cyst germination and virulence. Moreover, Nile red staining of PsACBP2 knockout and over-expression lines showed that PsACBP2 is involved in the formation of lipid bodies in P. sojae. Our results demonstrate that two ACBP genes are differently required for growth and development, and both are essential for virulence in P. sojae.


Asunto(s)
Phytophthora , Animales , Coenzima A/metabolismo , Inhibidor de la Unión a Diazepam/genética , Inhibidor de la Unión a Diazepam/metabolismo , Mamíferos/metabolismo , Glycine max/genética , Virulencia/genética
10.
Nucleic Acids Res ; 48(4): 1790-1799, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31819959

RESUMEN

The relentless adaptability of pathogen populations is a major obstacle to effective disease control measures. Increasing evidence suggests that gene transcriptional polymorphisms are a strategy deployed by pathogens to evade host immunity. However, the underlying mechanisms of transcriptional plasticity remain largely elusive. Here we found that the soybean root rot pathogen Phytophthora sojae evades the soybean Resistance gene Rps1b through transcriptional polymorphisms in the effector gene Avr1b that occur in the absence of any sequence variation. Elevated levels of histone H3 Lysine27 tri-methylation (H3K27me3) were observed at the Avr1b locus in a naturally occurring Avr1b-silenced strain but not in an Avr1b-expressing strain, suggesting a correlation between this epigenetic modification and silencing of Avr1b. To genetically test this hypothesis, we edited the gene, PsSu(z)12, encoding a core subunit of the H3K27me3 methyltransferase complex by using CRISPR/Cas9, and obtained three deletion mutants. H3K27me3 depletion within the Avr1b genomic region correlated with impaired Avr1b gene silencing in these mutants. Importantly, these mutants lost the ability to evade immune recognition by soybeans carrying Rps1b. These data support a model in which pathogen effector transcriptional polymorphisms are associated with changes in chromatin epigenetic marks, highlighting epigenetic variation as a mechanism of pathogen adaptive plasticity.


Asunto(s)
Glycine max/genética , Histonas/genética , Phytophthora/genética , Enfermedades de las Plantas/microbiología , Alelos , Secuencia de Aminoácidos/genética , Silenciador del Gen , Metilación , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Homología de Secuencia de Aminoácido , Glycine max/microbiología , Virulencia/genética
11.
PLoS Genet ; 15(4): e1008116, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31017897

RESUMEN

Pythium guiyangense, an oomycete from a genus of mostly plant pathogens, is an effective biological control agent that has wide potential to manage diverse mosquitoes. However, its mosquito-killing mechanisms are almost unknown. In this study, we observed that P. guiyangense could utilize cuticle penetration and ingestion of mycelia into the digestive system to infect mosquito larvae. To explore pathogenic mechanisms, a high-quality genome sequence with 239 contigs and an N50 contig length of 1,009 kb was generated. The genome assembly is approximately 110 Mb, which is almost twice the size of other sequenced Pythium genomes. Further genome analysis suggests that P. guiyangense may arise from a hybridization of two related but distinct parental species. Phylogenetic analysis demonstrated that P. guiyangense likely evolved from common ancestors shared with plant pathogens. Comparative genome analysis coupled with transcriptome sequencing data suggested that P. guiyangense may employ multiple virulence mechanisms to infect mosquitoes, including secreted proteases and kazal-type protease inhibitors. It also shares intracellular Crinkler (CRN) effectors used by plant pathogenic oomycetes to facilitate the colonization of plant hosts. Our experimental evidence demonstrates that CRN effectors of P. guiyangense can be toxic to insect cells. The infection mechanisms and putative virulence effectors of P. guiyangense uncovered by this study provide the basis to develop improved mosquito control strategies. These data also provide useful knowledge on host adaptation and evolution of the entomopathogenic lifestyle within the oomycete lineage. A deeper understanding of the biology of P. guiyangense effectors might also be useful for management of other important agricultural pests.


Asunto(s)
Genoma Fúngico , Genómica , Pythium/genética , Animales , Culicidae/microbiología , Evolución Molecular , Perfilación de la Expresión Génica , Genómica/métodos , Larva/microbiología , Larva/ultraestructura , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/microbiología , Pitiosis/microbiología , Pitiosis/transmisión , Transcriptoma
12.
BMC Genomics ; 21(1): 153, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050897

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have roles in gene regulation, epigenetics, and molecular scaffolding and it is hypothesized that they underlie some mammalian evolutionary adaptations. However, for many mammalian species, the absence of a genome assembly precludes the comprehensive identification of lncRNAs. The genome of the American beaver (Castor canadensis) has recently been sequenced, setting the stage for the systematic identification of beaver lncRNAs and the characterization of their expression in various tissues. The objective of this study was to discover and profile polyadenylated lncRNAs in the beaver using high-throughput short-read sequencing of RNA from sixteen beaver tissues and to annotate the resulting lncRNAs based on their potential for orthology with known lncRNAs in other species. RESULTS: Using de novo transcriptome assembly, we found 9528 potential lncRNA contigs and 187 high-confidence lncRNA contigs. Of the high-confidence lncRNA contigs, 147 have no known orthologs (and thus are putative novel lncRNAs) and 40 have mammalian orthologs. The novel lncRNAs mapped to the Oregon State University (OSU) reference beaver genome with greater than 90% sequence identity. While the novel lncRNAs were on average shorter than their annotated counterparts, they were similar to the annotated lncRNAs in terms of the relationships between contig length and minimum free energy (MFE) and between coverage and contig length. We identified beaver orthologs of known lncRNAs such as XIST, MEG3, TINCR, and NIPBL-DT. We profiled the expression of the 187 high-confidence lncRNAs across 16 beaver tissues (whole blood, brain, lung, liver, heart, stomach, intestine, skeletal muscle, kidney, spleen, ovary, placenta, castor gland, tail, toe-webbing, and tongue) and identified both tissue-specific and ubiquitous lncRNAs. CONCLUSIONS: To our knowledge this is the first report of systematic identification of lncRNAs and their expression atlas in beaver. LncRNAs-both novel and those with known orthologs-are expressed in each of the beaver tissues that we analyzed. For some beaver lncRNAs with known orthologs, the tissue-specific expression patterns were phylogenetically conserved. The lncRNA sequence data files and raw sequence files are available via the web supplement and the NCBI Sequence Read Archive, respectively.


Asunto(s)
Perfilación de la Expresión Génica , ARN Largo no Codificante , Roedores/genética , Transcriptoma , Animales , Biología Computacional/métodos , Regulación de la Expresión Génica , Genoma , Anotación de Secuencia Molecular , Conformación de Ácido Nucleico , Especificidad de Órganos/genética
13.
Mol Plant Microbe Interact ; 32(8): 1047-1060, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30794480

RESUMEN

Phytophthora ramorum is a destructive pathogen that causes sudden oak death disease. The genome sequence of P. ramorum isolate Pr102 was previously produced, using Sanger reads, and contained 12 Mb of gaps. However, isolate Pr102 had shown reduced aggressiveness and genome abnormalities. In order to produce an improved genome assembly for P. ramorum, we performed long-read sequencing of highly aggressive P. ramorum isolate CDFA1418886 (abbreviated as ND886). We generated a 60.5-Mb assembly of the ND886 genome using the Pacific Biosciences (PacBio) sequencing platform. The assembly includes 302 primary contigs (60.2 Mb) and nine unplaced contigs (265 kb). Additionally, we found a 'highly repetitive' component from the PacBio unassembled unmapped reads containing tandem repeats that are not part of the 60.5-Mb genome. The overall repeat content in the primary assembly was much higher than the Pr102 Sanger version (48 versus 29%), indicating that the long reads have captured repetitive regions effectively. The 302 primary contigs were phased into 345 haplotype blocks and 222,892 phased variants, of which the longest phased block was 1,513,201 bp with 7,265 phased variants. The improved phased assembly facilitated identification of 21 and 25 Crinkler effectors and 393 and 394 RXLR effector genes from two haplotypes. Of these, 24 and 25 RXLR effectors were newly predicted from haplotypes A and B, respectively. In addition, seven new paralogs of effector Avh207 were found in contig 54, not reported earlier. Comparison of the ND886 assembly with Pr102 V1 assembly suggests that several repeat-rich smaller scaffolds within the Pr102 V1 assembly were possibly misassembled; these regions are fully encompassed now in ND886 contigs. Our analysis further reveals that Pr102 is a heterokaryon with multiple nuclear types in the sequences corresponding to contig 10 of ND886 assembly.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Protozoos , Phytophthora , Polimorfismo Genético , Genoma de Protozoos/genética , Haplotipos , Phytophthora/genética
14.
New Phytol ; 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31436314

RESUMEN

Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.

15.
Mol Plant Microbe Interact ; 31(3): 374-385, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29106332

RESUMEN

Effector proteins are exported to the interior of host cells by diverse plant pathogens. Many oomycete pathogens maintain large families of candidate effector genes, encoding proteins with a secretory leader followed by an RxLR motif. Although most of these genes are very divergent between oomycete species, several genes are conserved between Phytophthora species and Hyaloperonospora arabidopsidis, suggesting that they play important roles in pathogenicity. We describe a pair of conserved effector candidates, HaRxL23 and PsAvh73, from H. arabidopsidis and P. sojae respectively. We show that HaRxL23 is expressed early during infection of Arabidopsis. HaRxL23 triggers an ecotype-specific defense response in Arabidopsis, suggesting that it is recognized by a host surveillance protein. HaRxL23 and PsAvh73 can suppress pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in Nicotiana benthamiana and effector-triggered immunity (ETI) in soybean. Transgenic Arabidopsis constitutively expressing HaRxL23 or PsAvh73 exhibit suppression of PTI and enhancement of bacterial and oomycete virulence. Together, our experiments demonstrate that these conserved oomycete RxLR effectors suppress PTI and ETI across diverse plant species.


Asunto(s)
Secuencia Conservada , Oomicetos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Phytophthora/metabolismo , Inmunidad de la Planta , Plantas/inmunología , Plantas/microbiología , Proteínas/metabolismo , Secuencia de Aminoácidos , Apoptosis , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Ecotipo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Oomicetos/patogenicidad , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Dominios Proteicos , Proteínas/química , Pseudomonas syringae/fisiología , Glycine max/inmunología , Glycine max/microbiología , Sintenía/genética , Nicotiana/citología , Nicotiana/microbiología , Transformación Genética
16.
Mol Microbiol ; 104(4): 621-635, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28213898

RESUMEN

Oomycetes are fungal-like eukaryotic microbes in the kingdom Stramenopila. We recently found that the oomycete plant pathogen Phytophthora sojae uses nuclear localization signals (NLSs) for translocation of proteins into the nucleus that differ from conventional well-characterized NLSs from mammals and yeast. Here, we have characterized in depth the NLSs of a P. sojae basic leucine zipper transcription factor, PsbZIP1. Nuclear localization of PsbZIP1 was determined by a central conserved region overlapping the DNA binding domain. Mutational analysis of this region identified four distinct elements that contributed multiplicatively to nuclear localization, but the conserved DNA binding residues were not required. Three of the elements showed autonomous NLS activity and the fourth served as a nuclear localization enhancer. Sequences within two of the nuclear localization elements defined a new form of bipartite NLS consisting of a triplet of basic residues followed by a tail of scattered basic amino acids.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Señales de Localización Nuclear/genética , Phytophthora/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Núcleo Celular/metabolismo , Datos de Secuencia Molecular , Señales de Localización Nuclear/metabolismo , Phytophthora/genética , Dominios Proteicos/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
17.
Plant Cell ; 27(7): 2057-72, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26163574

RESUMEN

We identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and ß-glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant's PAMP recognition machinery.


Asunto(s)
Glycine max/inmunología , Glycine max/microbiología , Glicósido Hidrolasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Phytophthora/enzimología , Phytophthora/patogenicidad , Factores de Virulencia/metabolismo , Bacterias/enzimología , Capsicum/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Glicósido Hidrolasas/aislamiento & purificación , Hidrólisis , Solanum lycopersicum/metabolismo , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína , Glycine max/citología , Nicotiana/citología , Nicotiana/metabolismo , Nicotiana/microbiología , Virulencia
18.
Phytopathology ; 108(12): 1412-1419, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29979095

RESUMEN

Oxathiapiprolin is a novel fungicide that was recently registered in a number of countries to control plant-pathogenic oomycetes such as Phytophthora capsici. In our previous study, point mutations G770V and G839W in oxysterol binding protein-related protein 1 (ORP1) were detected in oxathiapiprolin-resistant P. capsici isolates (PcORP1). Here, we used the CRISPR/Cas9 system to verify the effects of these two point mutations on P. capsici phenotypes. Transformants containing heterozygous G770V and G839W mutations in PcORP1 showed high levels of oxathiapiprolin resistance. The G770V transformants showed otherwise similar phenotypes compared with the wild-type isolate BYA5, including sporangia and zoospore production, cyst germination, and pathogenicity. However, two independent transformants with heterozygous G839W mutations in PcORP1 could not produce sporangia. Three transformants with an unexpected point mutation in PcORP1 (ΔN837) showed high oxathiapiprolin resistance, and either similar or significantly reduced fitness compared with BYA5. The same deletion (ΔN837) was confirmed to confer oxathiapiprolin resistance in P. sojae by using CRISPR/Cas9. These homozygous P. sojae mutants also showed either similar or strongly reduced fitness compared with the wild-type parent isolate P6497. These results improve our understanding of oxathiapiprolin resistance in Phytophthora spp., and will be useful for the development of novel oxysterol-binding protein homolog inhibitor fungicides.


Asunto(s)
Capsicum/microbiología , Resistencia a Medicamentos/genética , Fungicidas Industriales/farmacología , Hidrocarburos Fluorados/farmacología , Phytophthora/genética , Enfermedades de las Plantas/microbiología , Pirazoles/farmacología , Receptores de Esteroides/genética , Sistemas CRISPR-Cas , Edición Génica , Fenotipo , Phytophthora/efectos de los fármacos , Mutación Puntual , Esporangios/efectos de los fármacos , Esporangios/genética
19.
Mol Plant Microbe Interact ; 30(10): 767-769, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28682157

RESUMEN

Phytophthora rubi and P. fragariae are two closely related oomycete plant pathogens that exhibit strong morphological and physiological similarities but are specialized to infect different hosts of economic importance, namely, raspberry and strawberry. Here, we report the draft genome sequences of these two Phytophthora species as a first step toward understanding the genomic processes underlying plant host adaptation in these pathogens.


Asunto(s)
Fragaria/microbiología , Genoma , Phytophthora/genética , Rubus/microbiología , Secuenciación Completa del Genoma , Secuencia de Bases
20.
Plant J ; 83(4): 610-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26082394

RESUMEN

The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.


Asunto(s)
Ascomicetos/patogenicidad , Brassica napus/metabolismo , Brassica napus/microbiología , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA