Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nat Immunol ; 17(11): 1244-1251, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27760104

RESUMEN

Intestinal epithelial cells apically express glycans, especially α1,2-fucosyl linkages, which work as a biological interface for the host-microbe interaction. Emerging studies have shown that epithelial α1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (FUT2) encoding fucosyltransferase 2, an enzyme governing epithelial α1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α1,2-fucose and Fut2 gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.


Asunto(s)
Gastroenteritis/metabolismo , Homeostasis , Mucosa Intestinal/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Carbohidratos , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Gastroenteritis/genética , Gastroenteritis/inmunología , Gastroenteritis/microbiología , Predisposición Genética a la Enfermedad , Glicosilación , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Linfocitos/inmunología , Linfocitos/metabolismo , Polimorfismo Genético , Galactósido 2-alfa-L-Fucosiltransferasa
2.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029658

RESUMEN

Worldwide prevalence of obesity is associated with the increase of lifestyle-related diseases. The accumulation of intermuscular adipose tissue (IMAT) is considered a major problem whereby obesity leads to sarcopenia and metabolic disorders and thus is a promising target for treating these pathological conditions. However, whereas obesity-associated IMAT is suggested to originate from PDGFRα+ mesenchymal progenitors, the processes underlying this adipogenesis remain largely unexplored. Here, we comprehensively investigated intra- and extracellular changes associated with these processes using single-cell RNA sequencing and mass spectrometry. Our single-cell RNA sequencing analysis identified a small PDGFRα+ cell population in obese mice directed strongly toward adipogenesis. Proteomic analysis showed that the appearance of this cell population is accompanied by an increase in galectin-3 in interstitial environments, which was found to activate adipogenic PPARγ signals in PDGFRα+ cells. Moreover, IMAT formation during muscle regeneration was significantly suppressed in galectin-3 knockout mice. Our findings, together with these multi-omics datasets, could unravel microenvironmental networks during muscle regeneration highlighting possible therapeutic targets against IMAT formation in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Galectina 3/metabolismo , Músculo Esquelético/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Actinas/genética , Actinas/metabolismo , Adipogénesis , Tejido Adiposo/citología , Animales , Cardiotoxinas/farmacología , Diferenciación Celular , Senescencia Celular/genética , Dieta Alta en Grasa , Femenino , Galectina 3/deficiencia , Galectina 3/genética , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Obesidad/metabolismo , Obesidad/patología , PPAR gamma/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/deficiencia , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Regeneración , Transducción de Señal/genética
3.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37466138

RESUMEN

Accurately identifying phage-host relationships from their genome sequences is still challenging, especially for those phages and hosts with less homologous sequences. In this work, focusing on identifying the phage-host relationships at the species and genus level, we propose a contrastive learning based approach to learn whole-genome sequence embeddings that can take account of phage-host interactions (PHIs). Contrastive learning is used to make phages infecting the same hosts close to each other in the new representation space. Specifically, we rephrase whole-genome sequences with frequency chaos game representation (FCGR) and learn latent embeddings that 'encapsulate' phages and host relationships through contrastive learning. The contrastive learning method works well on the imbalanced dataset. Based on the learned embeddings, a proposed pipeline named CL4PHI can predict known hosts and unseen hosts in training. We compare our method with two recently proposed state-of-the-art learning-based methods on their benchmark datasets. The experiment results demonstrate that the proposed method using contrastive learning improves the prediction accuracy on known hosts and demonstrates a zero-shot prediction capability on unseen hosts. In terms of potential applications, the rapid pace of genome sequencing across different species has resulted in a vast amount of whole-genome sequencing data that require efficient computational methods for identifying phage-host interactions. The proposed approach is expected to address this need by efficiently processing whole-genome sequences of phages and prokaryotic hosts and capturing features related to phage-host relationships for genome sequence representation. This approach can be used to accelerate the discovery of phage-host interactions and aid in the development of phage-based therapies for infectious diseases.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Genoma Viral , Secuenciación Completa del Genoma , Mapeo Cromosómico
4.
Immunity ; 45(6): 1299-1310, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28002730

RESUMEN

Particulate pollution is thought to function as an adjuvant that can induce allergic responses. However, the exact cell types and immunological factors that initiate the lung-specific immune responses are unclear. We found that upon intratracheal instillation, particulates such as aluminum salts and silica killed alveolar macrophages (AMs), which then released interleukin-1α (IL-1α) and caused inducible bronchus-associated lymphoid tissue (iBALT) formation in the lung. IL-1α release continued for up to 2 weeks after particulate exposure, and type-2 allergic immune responses were induced by the inhalation of antigen during IL-1α release and iBALT formation, even long after particulate instillation. Recombinant IL-1α was sufficient to induce iBALTs, which coincided with subsequent immunoglobulin E responses, and IL-1-receptor-deficient mice failed to induce iBALT formation. Therefore, the AM-IL-1α-iBALT axis might be a therapeutic target for particulate-induced allergic inflammation.


Asunto(s)
Bronquios/inmunología , Interleucina-1alfa/inmunología , Tejido Linfoide/inmunología , Macrófagos Alveolares/patología , Material Particulado/toxicidad , Compuestos de Aluminio/toxicidad , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Dióxido de Silicio/toxicidad
5.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37846038

RESUMEN

SUMMARY: The Kyoto Encyclopedia of Genes and Genomes (KEGG) database serves as a valuable systems biology resource and is widely utilized in diverse research fields. However, existing software does not allow flexible visualization and network analyses of the vast and complex KEGG data. We developed ggkegg, an R package that integrates KEGG information with ggplot2 and ggraph. ggkegg enables enhanced visualization and network analyses of KEGG data. We demonstrate the utility of the package by providing examples of its application in single-cell, bulk transcriptome, and microbiome analyses. ggkegg may empower researchers to analyze complex biological networks and present their results effectively. AVAILABILITY AND IMPLEMENTATION: The package and user documentation are available at: https://github.com/noriakis/ggkegg.


Asunto(s)
Genoma , Programas Informáticos , Documentación
6.
Bioinformatics ; 38(18): 4264-4270, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920769

RESUMEN

MOTIVATION: Bacteriophages/phages are the viruses that infect and replicate within bacteria and archaea, and rich in human body. To investigate the relationship between phages and microbial communities, the identification of phages from metagenome sequences is the first step. Currently, there are two main methods for identifying phages: database-based (alignment-based) methods and alignment-free methods. Database-based methods typically use a large number of sequences as references; alignment-free methods usually learn the features of the sequences with machine learning and deep learning models. RESULTS: We propose INHERIT which uses a deep representation learning model to integrate both database-based and alignment-free methods, combining the strengths of both. Pre-training is used as an alternative way of acquiring knowledge representations from existing databases, while the BERT-style deep learning framework retains the advantage of alignment-free methods. We compare INHERIT with four existing methods on a third-party benchmark dataset. Our experiments show that INHERIT achieves a better performance with the F1-score of 0.9932. In addition, we find that pre-training two species separately helps the non-alignment deep learning model make more accurate predictions. AVAILABILITY AND IMPLEMENTATION: The codes of INHERIT are now available in: https://github.com/Celestial-Bai/INHERIT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Programas Informáticos , Metagenoma , Aprendizaje Automático , Bacterias
7.
Pancreatology ; 23(4): 367-376, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37088586

RESUMEN

BACKGROUND: /Objectives: Effects of chemotherapy on gut microbiota have been reported in various carcinomas. The current study aimed to evaluate the changes in the gut microbiota before and after neoadjuvant chemotherapy (NAC) in patients with resectable (R) and borderline resectable (BR) pancreatic ductal adenocarcinoma (PDAC) and understand their clinical implications. METHODS: Twenty patients diagnosed with R/BR-PDAC were included in this study. Stool samples were collected at two points, before and after NAC, for microbiota analysis using 16S ribosomal RNA (16S rRNA) gene sequences. RESULTS: Of the 20 patients, 18 (90%) were treated with gemcitabine plus S-1 as NAC, and the remaining patients received gemcitabine plus nab-paclitaxel and a fluorouracil, leucovorin, irinotecan, and oxaliplatin combination. No significant differences were observed in the α- and ß-diversity before and after NAC. Bacterial diversity was not associated with Evans classification (histological grade of tumor destruction by NAC) or postoperative complications. The relative abundance of Actinobacteria phylum after NAC was significantly lower than that before NAC (P = 0.02). At the genus level, the relative abundance of Bifidobacterium before NAC in patients with Evans grade 2 disease was significantly higher than that in patients with Evans grade 1 disease (P = 0.03). Patients with Evans grade 2 lost significantly more Bifidobacterium than patients with Evans grade 1 (P = 0.01). CONCLUSIONS: The diversity of gut microbiota was neither decreased by NAC for R/BR-PDAC nor associated with postoperative complications. Lower incidence of Bifidobacterium genus before NAC may be associated with a lower pathological response to NAC.


Asunto(s)
Carcinoma Ductal Pancreático , Microbioma Gastrointestinal , Neoplasias Pancreáticas , Humanos , Terapia Neoadyuvante , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/cirugía , Desoxicitidina/uso terapéutico , ARN Ribosómico 16S , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/cirugía , Fluorouracilo/uso terapéutico , Leucovorina/uso terapéutico , Neoplasias Pancreáticas
8.
Gastroenterology ; 160(6): 2089-2102.e12, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577875

RESUMEN

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridioides difficile infection (rCDI). However, the overall mechanisms underlying FMT success await comprehensive elucidation, and the safety of FMT has recently become a serious concern because of the occurrence of drug-resistant bacteremia transmitted by FMT. We investigated whether functional restoration of the bacteriomes and viromes by FMT could be an indicator of successful FMT. METHODS: The human intestinal bacteriomes and viromes from 9 patients with rCDI who had undergone successful FMT and their donors were analyzed. Prophage-based and CRISPR spacer-based host bacteria-phage associations in samples from recipients before and after FMT and in donor samples were examined. The gene functions of intestinal microorganisms affected by FMT were evaluated. RESULTS: Metagenomic sequencing of both the viromes and bacteriomes revealed that FMT does change the characteristics of intestinal bacteriomes and viromes in recipients after FMT compared with those before FMT. In particular, many Proteobacteria, the fecal abundance of which was high before FMT, were eliminated, and the proportion of Microviridae increased in recipients. Most temperate phages also behaved in parallel with the host bacteria that were altered by FMT. Furthermore, the identification of bacterial and viral gene functions before and after FMT revealed that some distinctive pathways, including fluorobenzoate degradation and secondary bile acid biosynthesis, were significantly represented. CONCLUSIONS: The coordinated action of phages and their host bacteria restored the recipients' intestinal flora. These findings show that the restoration of intestinal microflora functions reflects the success of FMT.


Asunto(s)
Enterocolitis Seudomembranosa/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Viroma , Adulto , Anciano , Bacteriófagos , Clostridioides difficile , Enterocolitis Seudomembranosa/microbiología , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/virología , Humanos , Masculino , Metagenómica , Microviridae , Persona de Mediana Edad , Proteobacteria , Viroma/genética
9.
Immunity ; 38(6): 1187-97, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23791646

RESUMEN

The small intestine harbors a substantial number of commensal bacteria and is sporadically invaded by pathogens, but the response to these microorganisms is fundamentally different. We identified a discriminatory sensor by using Toll-like receptor 3 (TLR3). Double-stranded RNA (dsRNA) of one major commensal species, lactic acid bacteria (LAB), triggered interferon-ß (IFN-ß) production, which protected mice from experimental colitis. The LAB-induced IFN-ß response was diminished by dsRNA digestion and treatment with endosomal inhibitors. Pathogenic bacteria contained less dsRNA and induced much less IFN-ß than LAB, and dsRNA was not involved in pathogen-induced IFN-ß induction. These results identify TLR3 as a sensor to small intestinal commensal bacteria and suggest that dsRNA in commensal bacteria contributes to anti-inflammatory and protective immune responses.


Asunto(s)
Colitis/prevención & control , Enterococcaceae/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Interferón beta/metabolismo , Lactobacillus/inmunología , Macrófagos/inmunología , Receptor Toll-Like 3/metabolismo , Animales , Células Cultivadas , Colitis/etiología , Colitis/inmunología , Colitis/microbiología , Modelos Animales de Enfermedad , Enterococcaceae/patogenicidad , Femenino , Infecciones por Bacterias Grampositivas/complicaciones , Infecciones por Bacterias Grampositivas/microbiología , Intestinos/inmunología , Intestinos/microbiología , Macrófagos/microbiología , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , ARN Bicatenario/inmunología
10.
Int Immunol ; 32(9): 597-603, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31882997

RESUMEN

Our bodies are constantly exposed to a wide variety of pathogenic micro-organisms through mucosal sites. Therefore, effective vaccines that can protect at the mucosa are vital; however, only a few clinically established mucosal vaccines are available. Although conventional injectable vaccines can induce antigen-specific serum immunoglobulin G (IgG) and prevent severe infection, it is difficult to efficiently inhibit the invasion of pathogens at mucosal surfaces because of the inadequate ability to induce antigen-specific IgA. Recently, we have developed a parenteral vaccine with emulsified curdlan and CpG oligodeoxynucleotides and reported its application. Unlike other conventional injectable vaccines, this immunization contributes to the induction of antigen-specific mucosal and systemic immune responses. Even if antigen-specific IgA at the mucosa disappears, this immunization can induce high-titer IgA after boosting with a small amount of antigen on the target mucosal surface. Indeed, vaccination with Streptococcus pneumoniae antigen effectively prevented lung infection induced by this bacterium. In addition, vaccination with Clostridium ramosum, which is a representative pathobiont associated with obesity and diabetes in humans, reduced obesity in mice colonized with this microorganism. This immunization approach might be an effective treatment for intestinal bacteria-mediated diseases that have been difficult to regulate so far, as well as common infectious diseases.


Asunto(s)
Membrana Mucosa/inmunología , Vacunas/inmunología , Animales , Humanos , Inmunidad Mucosa/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología
11.
Gastroenterology ; 157(6): 1530-1543.e4, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31445037

RESUMEN

BACKGROUND & AIMS: Dysregulation of the microbiome has been associated with development of complex diseases, such as obesity and diabetes. However, no method has been developed to control disease-associated commensal microbes. We investigated whether immunization with microbial antigens, using CpG oligodeoxynucleotides and/or curdlan as adjuvants, induces systemic antigen-specific IgA and IgG production and affects development of diseases in mice. METHODS: C57BL/6 mice were given intramuscular injections of antigens (ovalbumin, cholera toxin B-subunit, or pneumococcal surface protein A) combined with CpG oligodeoxynucleotides and/or curdlan. Blood and fecal samples were collected weekly and antigen-specific IgG and IgA titers were measured. Lymph nodes and spleens were collected and analyzed by enzyme-linked immunosorbent assay for antigen-specific splenic T-helper 1 cells, T-helper 17 cells, and memory B cells. Six weeks after primary immunization, mice were given a oral, nasal, or vaginal boost of ovalbumin; intestinal lamina propria, bronchial lavage, and vaginal swab samples were collected and antibodies and cytokines were measured. Some mice were also given oral cholera toxin or intranasal Streptococcus pneumoniae and the severity of diarrhea or pneumonia was analyzed. Gnotobiotic mice were gavaged with fecal material from obese individuals, which had a high abundance of Clostridium ramosum (a commensal microbe associated with obesity and diabetes), and were placed on a high-fat diet 2 weeks after immunization with C ramosum. Intestinal tissues were collected and analyzed by quantitative real-time polymerase chain reaction. RESULTS: Serum and fecal samples from mice given injections of antigens in combination with CpG oligodeoxynucleotides and curdlan for 3 weeks contained antigen-specific IgA and IgG, and splenocytes produced interferon-gamma and interleukin 17A. Lamina propria, bronchial, and vaginal samples contained antigen-specific IgA after the ovalbumin boost. This immunization regimen prevented development of diarrhea after injection of cholera toxin, and inhibited lung colonization by S pneumoniae. In gnotobiotic mice colonized with C ramosum and placed on a high-fat diet, the mice that had been immunized with C ramosum became less obese than the nonimmunized mice. CONCLUSIONS: Injection of mice with microbial antigens and adjuvant induces antigen-specific mucosal and systemic immune responses. Immunization with S pneumoniae antigen prevented lung infection by this bacteria, and immunization with C ramosum reduced obesity in mice colonized with this microbe and placed on a high-fat diet. This immunization approach might be used to protect against microbe-associated disorders of intestine.


Asunto(s)
Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Proteínas Bacterianas/inmunología , Toxina del Cólera/inmunología , Diarrea/diagnóstico , Diarrea/inmunología , Diarrea/microbiología , Modelos Animales de Enfermedad , Disbiosis/microbiología , Femenino , Vida Libre de Gérmenes , Humanos , Mucosa Intestinal/microbiología , Masculino , Ratones , Neumonía/diagnóstico , Neumonía/inmunología , Neumonía/microbiología , Índice de Severidad de la Enfermedad
12.
Nat Immunol ; 9(7): 769-76, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18516037

RESUMEN

The intestinal cell types responsible for defense against pathogenic organisms remain incompletely characterized. Here we identify a subset of CD11c(hi)CD11b(hi) lamina propria dendritic cells (LPDCs) that expressed Toll-like receptor 5 (TLR5) in the small intestine. When stimulated by the TLR5 ligand flagellin, TLR5(+) LPDCs induced the differentiation of naive B cells into immunoglobulin A-producing plasma cells by a mechanism independent of gut-associated lymphoid tissue. In addition, by a mechanism dependent on TLR5 stimulation, these LPDCs promoted the differentiation of antigen-specific interleukin 17-producing T helper cells and type 1 T helper cells. Unlike spleen DCs, the LPDCs specifically produced retinoic acid, which, in a dose-dependent way, supported the generation and retention of immunoglobulin A-producing cells in the lamina propria and positively regulated the differentiation interleukin 17-producing T helper cells. Our findings demonstrate unique properties of LPDCs and the importance of TLR5 for adaptive immunity in the intestine.


Asunto(s)
Formación de Anticuerpos , Células Dendríticas/inmunología , Inmunidad Celular , Inmunidad Mucosa , Receptor Toll-Like 5/biosíntesis , Animales , Linfocitos B/inmunología , Células Cultivadas , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Flagelina/inmunología , Citometría de Flujo , Inmunoglobulina A/biosíntesis , Inmunoglobulina A/inmunología , Inmunohistoquímica , Activación de Linfocitos/inmunología , Ratones , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Tretinoina/inmunología , Tretinoina/metabolismo
13.
Immunity ; 34(3): 352-63, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21435586

RESUMEN

Toll-like receptor 7 (TLR7) and TLR9 sense viral nucleic acids and induce production of type I interferon (IFN) by plasmacytoid dendritic cells (pDCs) to protect the host from virus infection. We showed that the IFN-inducible antiviral protein Viperin promoted TLR7- and TLR9-mediated production of type I IFN by pDCs. Viperin expression was potently induced after TLR7 or TLR9 stimulation and Viperin localized to the cytoplasmic lipid-enriched compartments, lipid bodies, in pDCs. Viperin interacted with the signal mediators IRAK1 and TRAF6 to recruit them to the lipid bodies and facilitated K63-linked ubiquitination of IRAK1 to induce the nuclear translocation of transcription factor IRF7. Loss of Viperin reduced TLR7- and TLR9-mediated production of type I IFN by pDCs. However, Viperin was dispensable for the production of type I IFN induced by intracellular nucleic acids. Thus, Viperin mediates its antiviral function via the regulation of the TLR7 and TLR9-IRAK1 signaling axis in pDCs.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Proteínas/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica/inmunología , Inmunohistoquímica , Interferón Tipo I/efectos de los fármacos , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
14.
Immunity ; 34(4): 514-26, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21497116

RESUMEN

Particulates such as silica crystal (silica) and aluminum salts (alum) activate the inflammasome and induce the secretion of proinflammatory cytokines in macrophages. These particulates also induce the production of immunoglobulin E via a T helper 2 (Th2) cell-associated mechanism. However, the mechanism involved in the induction of type 2 immunity has not been elucidated. Here, we showed that silica and alum induced lipopolysaccharide-primed macrophages to produce the lipid mediator prostaglandin E2 (PGE2) and interleukin-1ß (IL-1ß). Macrophages deficient in the inflammasome components caspase 1, NALP3, and ASC revealed that PGE2 production was independent of the NALP3 inflammasome. PGE2 expression was markedly reduced in PGE synthase-deficient (Ptges⁻/⁻) macrophages, and Ptges⁻/⁻ mice displayed reduced antigen-specific serum IgE concentrations after immunization with alum or silica. Our results indicate that silica and alum regulate the production of PGE2 and that the induction of PGE2 by particulates controls the immune response in vivo.


Asunto(s)
Aluminio/farmacología , Proteínas Portadoras/inmunología , Inflamasomas/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Prostaglandinas/biosíntesis , Dióxido de Silicio/farmacología , Animales , Caspasa 1/metabolismo , Células Cultivadas , Cristalización , Oxidorreductasas Intramoleculares/deficiencia , Oxidorreductasas Intramoleculares/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Fagosomas/inmunología , Prostaglandina-E Sintasas , Prostaglandinas/inmunología
15.
Neurobiol Dis ; 124: 81-92, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30423474

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Although increased production of prostaglandin E2 (PGE2) has been implicated in tissue damage in several pathological settings, the role of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, in dopaminergic neurodegeneration remains unclear. Here we show that mPGES-1 is up-regulated in the dopaminergic neurons of the substantia nigra of postmortem brain tissue from PD patients and in neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. The expression of mPGES-1 was also up-regulated in cultured dopaminergic neurons stimulated with 6-OHDA. The genetic deletion of mPGES-1 not only abolished 6-OHDA-induced PGE2 production but also inhibited 6-OHDA-induced dopaminergic neurodegeneration both in vitro and in vivo. Nigrostriatal projections, striatal dopamine content, and neurological functions were significantly impaired by 6-OHDA administration in wild-type (WT) mice, but not in mPGES-1 knockout (KO) mice. Furthermore, in cultured primary mesencephalic neurons, addition of PGE2 to compensate for the deficiency of 6-OHDA-induced PGE2 production in mPGES-1 KO neurons recovered 6-OHDA toxicity to almost the same extent as that seen in WT neurons. These results suggest that induction of mPGES-1 enhances 6-OHDA-induced dopaminergic neuronal death through excessive PGE2 production. Thus, mPGES-1 may be a valuable therapeutic target for treatment of PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Prostaglandina-E Sintasas/metabolismo , Sustancia Negra/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Oxidopamina/administración & dosificación , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Cultivo Primario de Células , Prostaglandina-E Sintasas/genética
16.
Blood ; 129(5): 587-597, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-27827823

RESUMEN

Granulocyte colony-stimulating factor (G-CSF) is widely used for peripheral blood stem/progenitor mobilization. G-CSF causes low-grade fever that is ameliorated by nonsteroidal anti-inflammatory drugs (NSAIDs), suggesting the activation of arachidonic acid (AA) cascade. How G-CSF regulated this reaction was assessed. G-CSF treatment in mice resulted in fever, which was canceled in prostaglandin E synthase (mPGES-1)-deficient mice. Mobilization efficiency was twice as high in chimeric mice lacking mPGES-1, specifically in hematopoietic cells, suggesting that prostaglandin E2 (PGE2) from hematopoietic cells modulated the bone marrow (BM) microenvironment. Neutrophils from steady-state BM constitutively expressed mPGES-1 and significantly enhanced PGE2 production in vitro by ß-adrenergic stimulation, but not by G-CSF, which was inhibited by an NSAID. Although neutrophils expressed all ß-adrenergic receptors, only ß3-agonist induced this phenomenon. Liquid chromatography-tandem mass spectrometry traced ß-agonist-induced PGE2 synthesis from exogenous deuterium-labeled AA. Spontaneous PGE2 production was highly efficient in Gr-1high neutrophils among BM cells from G-CSF-treated mice. In addition to these in vitro data, the in vivo depletion of Gr-1high neutrophils disrupted G-CSF-induced fever. Furthermore, sympathetic denervation eliminated both neutrophil priming for PGE2 production and fever during G-CSF treatment. Thus, sympathetic tone-primed BM neutrophils were identified as one of the major PGE2 producers. PGE2 upregulated osteopontin, specifically in preosteoblasts, to retain progenitors in the BM via EP4 receptor. Thus, the sympathetic nervous system regulated neutrophils as an indispensable PGE2 source to modulate BM microenvironment and body temperature. This study provided a novel mechanistic insight into the communication of the nervous system, BM niche components, and hematopoietic cells.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Dinoprostona/metabolismo , Fiebre/inducido químicamente , Factor Estimulante de Colonias de Granulocitos/farmacología , Neutrófilos/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Línea Celular , Fiebre/genética , Eliminación de Gen , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/efectos adversos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones Endogámicos C57BL , Neutrófilos/citología , Neutrófilos/metabolismo , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Receptores Adrenérgicos beta/metabolismo
17.
Int Immunol ; 30(4): 141-154, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29617862

RESUMEN

Immunotherapies have led to the successful development of novel therapies for cancer. However, there is increasing concern regarding the adverse effects caused by non-tumor-specific immune responses. Here, we report an effective strategy to generate high-avidity tumor-antigen-specific CTLs, using Cas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) delivery. As a proof-of-principle demonstration, we selected the gp100 melanoma-associated tumor antigen, and cloned the gp100-specific high-avidity TCR from gp100-immunized mice. To enable rapid structural dissection of the TCR, we developed a 3D protein structure modeling system for the TCR/antigen-major histocompatibility complex (pMHC) interaction. Combining these technologies, we efficiently generated gp100-specific PD-1(-) CD8+ T cells, and demonstrated that the genetically engineered CD8+ T cells have high avidity against melanoma cells both in vitro and in vivo. Our methodology offers computational prediction of the TCR response, and enables efficient generation of tumor antigen-specific CD8+ T cells that can neutralize tumor-induced immune suppression leading to a potentially powerful cancer therapeutic.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Neoplasias/genética , Neoplasias/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/química , Línea Celular Tumoral , Femenino , Técnicas de Inactivación de Genes , Genes Reporteros , Melanoma Experimental , Ratones , Modelos Moleculares , Complejos Multiproteicos , Neoplasias/metabolismo , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Antígeno gp100 del Melanoma/química , Antígeno gp100 del Melanoma/inmunología , Antígeno gp100 del Melanoma/metabolismo
18.
Int Immunol ; 30(7): 319-331, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29767727

RESUMEN

The gut is an extremely complicated ecosystem where micro-organisms, nutrients and host cells interact vigorously. Although the function of the intestine and its barrier system weakens with age, some probiotics can potentially prevent age-related intestinal dysfunction. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, which are the constituents of LB81 yogurt, are representative probiotics. However, it is unclear whether their long-term intake has a beneficial influence on systemic function. Here, we examined the gut microbiome, fecal metabolites and gene expression profiles of various organs in mice. Although age-related alterations were apparent in them, long-term LB81 yogurt intake led to an increased Bacteroidetes to Firmicutes ratio and elevated abundance of the bacterial family S24-7 (Bacteroidetes), which is known to be associated with butyrate and propanoate production. According to our fecal metabolite analysis to detect enrichment, long-term LB81 yogurt intake altered the intestinal metabolic pathways associated with propanoate and butanoate in the mice. Gene ontology analysis also revealed that long-term LB81 yogurt intake influenced many physiological functions related to the defense response. The profiles of various genes associated with antimicrobial peptides-, tight junctions-, adherens junctions- and mucus-associated intestinal barrier functions were also drastically altered in the LB81 yogurt-fed mice. Thus, long-term intake of LB81 yogurt has the potential to maintain systemic homeostasis, such as the gut barrier function, by controlling the intestinal microbiome and its metabolites.


Asunto(s)
Fermentación , Lactobacillus delbrueckii/metabolismo , Probióticos/metabolismo , Streptococcus thermophilus/metabolismo , Yogur/microbiología , Animales , Intestinos/inmunología , Intestinos/microbiología , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Streptococcus thermophilus/genética , Streptococcus thermophilus/inmunología
19.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509948

RESUMEN

As glucose-dependent insulinotropic polypeptide (GIP) possesses pro-adipogenic action, the suppression of the GIP hypersecretion seen in obesity might represent a novel therapeutic approach to the treatment of obesity. However, the mechanism of GIP hypersecretion remains largely unknown. In the present study, we investigated GIP secretion in two mouse models of obesity: High-fat diet-induced obese (DIO) mice and leptin-deficient Lepob/ob mice. In DIO mice, plasma GIP was increased along with an increase in GIP mRNA expression in the lower small intestine. Despite the robust alteration in the gut microbiome in DIO mice, co-administration of maltose and the α-glucosidase inhibitor (α-GI) miglitol induced the microbiome-mediated suppression of GIP secretion. The plasma GIP levels of Lepob/ob mice were also elevated and were suppressed by fat transplantation. The GIP mRNA expression in fat tissue was not increased in Lepob/ob mice, while the expression of an interleukin-1 receptor antagonist (IL-1Ra) was increased. Fat transplantation suppressed the expression of IL-1Ra. The plasma IL-1Ra levels were positively correlated with the plasma GIP levels. Accordingly, although circulating GIP levels are increased in both DIO and Lepob/ob mice, the underlying mechanisms differ, and the anti-obesity actions of α-GIs and leptin sensitizers may be mediated partly by the suppression of GIP secretion.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Polipéptido Inhibidor Gástrico/metabolismo , Leptina/deficiencia , Obesidad/metabolismo , Animales , Polipéptido Inhibidor Gástrico/sangre , Polipéptido Inhibidor Gástrico/genética , Expresión Génica , Proteína Antagonista del Receptor de Interleucina 1/sangre , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Leptina/genética , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/metabolismo
20.
J Hepatol ; 69(1): 110-120, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29458169

RESUMEN

BACKGROUND & AIMS: Liver repair following hepatic ischemia/reperfusion (I/R) injury is crucial to survival. This study aims to examine the role of endogenous prostaglandin E2 (PGE2) produced by inducible microsomal PGE synthase-1 (mPGES-1), a terminal enzyme of PGE2 generation, in liver injury and repair following hepatic I/R. METHODS: mPGES-1 deficient (Ptges-/-) mice or their wild-type (WT) counterparts were subjected to partial hepatic ischemia followed by reperfusion. The role of E prostanoid receptor 4 (EP4) was then studied using a genetic knockout model and a selective antagonist. RESULTS: Compared with WT mice, Ptges-/- mice exhibited reductions in alanine aminotransferase (ALT), necrotic area, neutrophil infiltration, chemokines, and proinflammatory cytokine levels. Ptges-/- mice also showed promoted liver repair and increased Ly6Clow macrophages (Ly6Clow/CD11bhigh/F4/80high-cells) with expression of anti-inflammatory and reparative genes, while WT mice exhibited delayed liver repair and increased Ly6Chigh macrophages (Ly6Chigh/CD11bhigh/F4/80low-cells) with expression of proinflammatory genes. Bone marrow (BM)-derived mPGES-1-deficient macrophages facilitated liver repair with increases in Ly6Clow macrophages. In vitro, mPGES-1 was expressed in macrophages polarized toward the proinflammatory profile. Mice treated with the mPGES-1 inhibitor Compound III displayed increased liver protection and repair. Hepatic I/R enhanced the hepatic expression of PGE receptor subtype, EP4, in WT mice, which was reduced in Ptges-/- mice. A selective EP4 antagonist and genetic deletion of Ptger4, which codes for EP4, accelerated liver repair. The proinflammatory gene expression was upregulated by stimulation of EP4 agonist in WT macrophages but not in EP4-deficient macrophages. CONCLUSIONS: These results indicate that mPGES-1 regulates macrophage polarization as well as liver protection and repair through EP4 signaling during hepatic I/R. Inhibition of mPGES-1 could have therapeutic potential by promoting liver repair after acute liver injury. LAY SUMMARY: Hepatic ischemia/reperfusion injury is a serious complication that occurs in liver surgery. Herein, we demonstrated that inducible prostaglandin E2 synthase (mPGES-1), an enzyme involved in synthesizing prostaglandin E2, worsens the injury and delays liver repair through accumulation of proinflammatory macrophages. Inhibition of mPGES-1 offers a potential therapy for both liver protection and repair in hepatic ischemia/reperfusion injury.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Hepatopatías/genética , Regeneración Hepática , Macrófagos/metabolismo , Prostaglandina-E Sintasas/genética , Daño por Reperfusión/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hepatopatías/tratamiento farmacológico , Hepatopatías/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prostaglandina-E Sintasas/antagonistas & inhibidores , Prostaglandina-E Sintasas/biosíntesis , ARN/genética , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA