Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596869

RESUMEN

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genética
2.
Cell ; 179(7): 1609-1622.e16, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835035

RESUMEN

Microglia, the brain-resident immune cells, are critically involved in many physiological and pathological brain processes, including neurodegeneration. Here we characterize microglia morphology and transcriptional programs across ten species spanning more than 450 million years of evolution. We find that microglia express a conserved core gene program of orthologous genes from rodents to humans, including ligands and receptors associated with interactions between glia and neurons. In most species, microglia show a single dominant transcriptional state, whereas human microglia display significant heterogeneity. In addition, we observed notable differences in several gene modules of rodents compared with primate microglia, including complement, phagocytic, and susceptibility genes to neurodegeneration, such as Alzheimer's and Parkinson's disease. Our study provides an essential resource of conserved and divergent microglia pathways across evolution, with important implications for future development of microglia-based therapies in humans.


Asunto(s)
Evolución Molecular , Redes Reguladoras de Genes , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Análisis de la Célula Individual , Transcriptoma , Animales , Pollos , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Primates , Reptiles , Roedores , Ovinos , Porcinos , Pez Cebra
3.
Nat Immunol ; 19(6): 636-644, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29777220

RESUMEN

Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.


Asunto(s)
Microglía , ARN Mensajero/análisis , Análisis de Secuencia de ARN/métodos , Animales , Inmunoprecipitación/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ribosomas
5.
Nature ; 622(7981): 41-47, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794265

RESUMEN

Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.


Asunto(s)
Genes , Genoma Humano , Anotación de Secuencia Molecular , Isoformas de Proteínas , Humanos , Genoma Humano/genética , Anotación de Secuencia Molecular/normas , Anotación de Secuencia Molecular/tendencias , Isoformas de Proteínas/genética , Proyecto Genoma Humano , Seudogenes , ARN/genética
6.
Cell ; 154(1): 26-46, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23827673

RESUMEN

Long intervening noncoding RNAs (lincRNAs) are transcribed from thousands of loci in mammalian genomes and might play widespread roles in gene regulation and other cellular processes. This Review outlines the emerging understanding of lincRNAs in vertebrate animals, with emphases on how they are being identified and current conclusions and questions regarding their genomics, evolution and mechanisms of action.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Evolución Molecular , Humanos , ARN Largo no Codificante/química , ARN Largo no Codificante/aislamiento & purificación , Transcripción Genética
7.
Cell ; 152(4): 844-58, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415231

RESUMEN

To use microRNAs to downregulate mRNA targets, cells must first process these ~22 nt RNAs from primary transcripts (pri-miRNAs). These transcripts form RNA hairpins important for processing, but additional determinants must distinguish pri-miRNAs from the many other hairpin-containing transcripts expressed in each cell. Illustrating the complexity of this recognition, we show that most Caenorhabditis elegans pri-miRNAs lack determinants required for processing in human cells. To find these determinants, we generated many variants of four human pri-miRNAs, sequenced millions that retained function, and compared them with the starting variants. Our results confirmed the importance of pairing in the stem and revealed three primary-sequence determinants, including an SRp20-binding motif (CNNC) found downstream of most pri-miRNA hairpins in bilaterian animals, but not in nematodes. Adding this and other determinants to C. elegans pri-miRNAs imparted efficient processing in human cells, thereby confirming the importance of primary-sequence determinants for distinguishing pri-miRNAs from other hairpin-containing transcripts.


Asunto(s)
Caenorhabditis elegans/genética , Secuencias Invertidas Repetidas , MicroARNs/química , MicroARNs/metabolismo , Motivos de Nucleótidos , Procesamiento Postranscripcional del ARN , Animales , Caenorhabditis elegans/metabolismo , Extractos Celulares/química , Humanos , MicroARNs/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Factores de Empalme Serina-Arginina
8.
Mol Cell ; 79(2): 251-267.e6, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32504555

RESUMEN

The core components of the nuclear RNA export pathway are thought to be required for export of virtually all polyadenylated RNAs. Here, we depleted different proteins that act in nuclear export in human cells and quantified the transcriptome-wide consequences on RNA localization. Different genes exhibited substantially variable sensitivities, with depletion of NXF1 and TREX components causing some transcripts to become strongly retained in the nucleus while others were not affected. Specifically, NXF1 is preferentially required for export of single- or few-exon transcripts with long exons or high A/U content, whereas depletion of TREX complex components preferentially affects spliced and G/C-rich transcripts. Using massively parallel reporter assays, we identified short sequence elements that render transcripts dependent on NXF1 for their export and identified synergistic effects of splicing and NXF1. These results revise the current model of how nuclear export shapes the distribution of RNA within human cells.


Asunto(s)
Transporte Activo de Núcleo Celular , Complejos Multiproteicos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/fisiología , Transporte de ARN , Proteínas de Unión al ARN/fisiología , ARN/metabolismo , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/metabolismo , Humanos , Ratones , ARN/química , Estabilidad del ARN , RNA-Seq
9.
Mol Cell ; 78(3): 434-444.e5, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32294471

RESUMEN

Gene expression is regulated by the rates of synthesis and degradation of mRNAs, but how these processes are coordinated is poorly understood. Here, we show that reduced transcription dynamics of specific genes leads to enhanced m6A deposition, preferential activity of the CCR4-Not complex, shortened poly(A) tails, and reduced stability of the respective mRNAs. These effects are also exerted by internal ribosome entry site (IRES) elements, which we found to be transcriptional pause sites. However, when transcription dynamics, and subsequently poly(A) tails, are globally altered, cells buffer mRNA levels by adjusting the expression of mRNA degradation machinery. Stress-provoked global impediment of transcription elongation leads to a dramatic inhibition of the mRNA degradation machinery and massive mRNA stabilization. Accordingly, globally enhanced transcription, such as following B cell activation or glucose stimulation, has the opposite effects. This study uncovers two molecular pathways that maintain balanced gene expression in mammalian cells by linking transcription to mRNA stability.


Asunto(s)
Poli A/genética , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/análogos & derivados , Animales , Linfocitos B/fisiología , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Sitios Internos de Entrada al Ribosoma , Células MCF-7 , Ratones Endogámicos C57BL , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Poli A/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Receptores CCR4/genética , Receptores CCR4/metabolismo
10.
Nature ; 594(7862): 240-245, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33979833

RESUMEN

The coronavirus SARS-CoV-2 is the cause of the ongoing pandemic of COVID-191. Coronaviruses have developed a variety of mechanisms to repress host mRNA translation to allow the translation of viral mRNA, and concomitantly block the cellular innate immune response2,3. Although several different proteins of SARS-CoV-2 have previously been implicated in shutting off host expression4-7, a comprehensive picture of the effects of SARS-CoV-2 infection on cellular gene expression is lacking. Here we combine RNA sequencing, ribosome profiling and metabolic labelling of newly synthesized RNA to comprehensively define the mechanisms that are used by SARS-CoV-2 to shut off cellular protein synthesis. We show that infection leads to a global reduction in translation, but that viral transcripts are not preferentially translated. Instead, we find that infection leads to the accelerated degradation of cytosolic cellular mRNAs, which facilitates viral takeover of the mRNA pool in infected cells. We reveal that the translation of transcripts that are induced in response to infection (including innate immune genes) is impaired. We demonstrate this impairment is probably mediated by inhibition of nuclear mRNA export, which prevents newly transcribed cellular mRNA from accessing ribosomes. Overall, our results uncover a multipronged strategy that is used by SARS-CoV-2 to take over the translation machinery and to suppress host defences.


Asunto(s)
COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Biosíntesis de Proteínas , SARS-CoV-2/patogenicidad , Regiones no Traducidas 5'/genética , COVID-19/genética , COVID-19/inmunología , Línea Celular , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Biosíntesis de Proteínas/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Ribosomas/metabolismo , Proteínas no Estructurales Virales/metabolismo
11.
Trends Genet ; 39(12): 908-923, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783604

RESUMEN

Mammalian genomes are pervasively transcribed into different noncoding (nc)RNA classes, each one with its own hallmarks and exceptions. Some of them are nested into each other, such as host genes for small nucleolar RNAs (snoRNAs), which were long believed to simply act as molecular containers strictly facilitating snoRNA biogenesis. However, recent findings show that noncoding snoRNA host genes (ncSNHGs) display features different from those of 'regular' long ncRNAs (lncRNAs) and, more importantly, they can exert independent and unrelated functions to those of the encoded snoRNAs. Here, we review and summarize past and recent evidence that ncSNHGs form a defined subclass among the plethora of lncRNAs, and discuss future research that can further elucidate their biological relevance.


Asunto(s)
ARN Largo no Codificante , ARN Nucleolar Pequeño , Animales , ARN Nucleolar Pequeño/genética , ARN Largo no Codificante/genética , ARN no Traducido/genética , Genoma , Mamíferos/genética
12.
Nat Rev Genet ; 21(2): 102-117, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31729473

RESUMEN

Long non-coding RNAs (lncRNAs) are diverse transcription products emanating from thousands of loci in mammalian genomes. Cis-acting lncRNAs, which constitute a substantial fraction of lncRNAs with an attributed function, regulate gene expression in a manner dependent on the location of their own sites of transcription, at varying distances from their targets in the linear genome. Through various mechanisms, cis-acting lncRNAs have been demonstrated to activate, repress or otherwise modulate the expression of target genes. We discuss the activities that have been ascribed to cis-acting lncRNAs, the evidence and hypotheses regarding their modes of action, and the methodological advances that enable their identification and characterization. The emerging principles highlight lncRNAs as transcriptional units highly adept at contributing to gene regulatory networks and to the generation of fine-tuned spatial and temporal gene expression programmes.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Largo no Codificante/genética , Animales , Redes Reguladoras de Genes , Humanos , Transcripción Genética
13.
Cell ; 147(7): 1537-50, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196729

RESUMEN

Thousands of long intervening noncoding RNAs (lincRNAs) have been identified in mammals. To better understand the evolution and functions of these enigmatic RNAs, we used chromatin marks, poly(A)-site mapping and RNA-Seq data to identify more than 550 distinct lincRNAs in zebrafish. Although these shared many characteristics with mammalian lincRNAs, only 29 had detectable sequence similarity with putative mammalian orthologs, typically restricted to a single short region of high conservation. Other lincRNAs had conserved genomic locations without detectable sequence conservation. Antisense reagents targeting conserved regions of two zebrafish lincRNAs caused developmental defects. Reagents targeting splice sites caused the same defects and were rescued by adding either the mature lincRNA or its human or mouse ortholog. Our study provides a roadmap for identification and analysis of lincRNAs in model organisms and shows that lincRNAs play crucial biological roles during embryonic development with functionality conserved despite limited sequence conservation.


Asunto(s)
Desarrollo Embrionario , Evolución Molecular , ARN no Traducido/genética , ARN no Traducido/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Vertebrados/embriología , Vertebrados/genética
14.
Mol Cell ; 72(3): 553-567.e5, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401432

RESUMEN

In mammals, neurons in the peripheral nervous system (PNS) have regenerative capacity following injury, but it is generally absent in the CNS. This difference is attributed, at least in part, to the intrinsic ability of PNS neurons to activate a unique regenerative transcriptional program following injury. Here, we profiled gene expression following sciatic nerve crush in mice and identified long noncoding RNAs (lncRNAs) that act in the regenerating neurons and which are typically not expressed in other contexts. We show that two of these lncRNAs regulate the extent of neuronal outgrowth. We then focus on one of these, Silc1, and show that it regulates neuroregeneration in cultured cells and in vivo, through cis-acting activation of the transcription factor Sox11.


Asunto(s)
Regeneración Nerviosa/genética , ARN Largo no Codificante/fisiología , Animales , Línea Celular Tumoral , Ganglios Espinales , Regulación de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/fisiología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/fisiopatología , ARN Largo no Codificante/genética , ARN Mensajero , Factores de Transcripción SOXC , Nervio Ciático/metabolismo
15.
Genes Dev ; 32(1): 70-78, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29386330

RESUMEN

The number of known long noncoding RNA (lncRNA) functions is rapidly growing, but how those functions are encoded in their sequence and structure remains poorly understood. NORAD (noncoding RNA activated by DNA damage) is a recently characterized, abundant, and highly conserved lncRNA that is required for proper mitotic divisions in human cells. NORAD acts in the cytoplasm and antagonizes repressors from the Pumilio family that bind at least 17 sites spread through 12 repetitive units in NORAD sequence. Here we study conserved sequences in NORAD repeats, identify additional interacting partners, and characterize the interaction between NORAD and the RNA-binding protein SAM68 (KHDRBS1), which is required for NORAD function in antagonizing Pumilio. These interactions provide a paradigm for how repeated elements in a lncRNA facilitate function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Sitios de Unión , Línea Celular Tumoral , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Humanos , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Proteínas Represoras/metabolismo
16.
EMBO J ; 40(12): e106357, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33938020

RESUMEN

The functions of long RNAs, including mRNAs and long noncoding RNAs (lncRNAs), critically depend on their subcellular localization. The identity of the sequences that dictate subcellular localization and their high-resolution anatomy remain largely unknown. We used a suite of massively parallel RNA assays and libraries containing thousands of sequence variants to pinpoint the functional features within the SIRLOIN element, which dictates nuclear enrichment through hnRNPK recruitment. In addition, we profiled the endogenous SIRLOIN RNA-nucleoprotein complex and identified the nuclear RNA-binding proteins SLTM and SNRNP70 as novel SIRLOIN binders. Taken together, using massively parallel assays, we identified the features that dictate binding of hnRNPK, SLTM, and SNRNP70 to SIRLOIN and found that these factors are jointly required for SIRLOIN activity. Our study thus provides a roadmap for high-throughput dissection of functional sequence elements in long RNAs.


Asunto(s)
ARN Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Humanos , Células MCF-7 , Unión Proteica , RNA-Seq
17.
EMBO J ; 39(6): e103777, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32090359

RESUMEN

Research on non-coding RNA (ncRNA) is a rapidly expanding field. Providing an official gene symbol and name to ncRNA genes brings order to otherwise potential chaos as it allows unambiguous communication about each gene. The HUGO Gene Nomenclature Committee (HGNC, www.genenames.org) is the only group with the authority to approve symbols for human genes. The HGNC works with specialist advisors for different classes of ncRNA to ensure that ncRNA nomenclature is accurate and informative, where possible. Here, we review each major class of ncRNA that is currently annotated in the human genome and describe how each class is assigned a standardised nomenclature.


Asunto(s)
Genoma Humano/genética , ARN no Traducido/clasificación , Terminología como Asunto , Humanos , ARN no Traducido/genética
18.
Bioinformatics ; 39(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982748

RESUMEN

MOTIVATION: Identifying target promoters of active enhancers is a crucial step for realizing gene regulation and deciphering phenotypes and diseases. Up to now, several computational methods were developed to predict enhancer gene interactions, but they require either many epigenomic and transcriptomic experimental assays to generate cell-type (CT)-specific predictions or a single experiment applied to a large cohort of CTs to extract correlations between activities of regulatory elements. Thus, inferring CT-specific enhancer gene interactions in unstudied or poorly annotated CTs becomes a laborious and costly task. RESULTS: Here, we aim to infer CT-specific enhancer target interactions, using minimal experimental input. We introduce Cell-specific ENhancer Target pREdiction (CENTRE), a machine learning framework that predicts enhancer target interactions in a CT-specific manner, using only gene expression and ChIP-seq data for three histone modifications for the CT of interest. CENTRE exploits the wealth of available datasets and extracts cell-type agnostic statistics to complement the CT-specific information. CENTRE is thoroughly tested across many datasets and CTs and achieves equivalent or superior performance than existing algorithms that require massive experimental data. AVAILABILITY AND IMPLEMENTATION: CENTRE's open-source code is available at GitHub via https://github.com/slrvv/CENTRE.


Asunto(s)
Algoritmos , Elementos de Facilitación Genéticos , Humanos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Epigenómica
19.
Nature ; 555(7694): 107-111, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466324

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging as key parts of multiple cellular pathways, but their modes of action and how these are dictated by sequence remain unclear. lncRNAs tend to be enriched in the nuclear fraction, whereas most mRNAs are overtly cytoplasmic, although several studies have found that hundreds of mRNAs in various cell types are retained in the nucleus. It is thus conceivable that some mechanisms that promote nuclear enrichment are shared between lncRNAs and mRNAs. Here, to identify elements in lncRNAs and mRNAs that can force nuclear localization, we screened libraries of short fragments tiled across nuclear RNAs, which were cloned into the untranslated regions of an efficiently exported mRNA. The screen identified a short sequence derived from Alu elements and bound by HNRNPK that increased nuclear accumulation. Binding of HNRNPK to C-rich motifs outside Alu elements is also associated with nuclear enrichment in both lncRNAs and mRNAs, and this mechanism is conserved across species. Our results thus identify a pathway for regulation of RNA accumulation and subcellular localization that has been co-opted to regulate the fate of transcripts with integrated Alu elements.


Asunto(s)
Elementos Alu/genética , Núcleo Celular/genética , Transporte de ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Animales , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Evolución Molecular , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Células MCF-7 , Ratones , Especificidad de la Especie , Regiones no Traducidas/genética
20.
Nucleic Acids Res ; 50(14): 8080-8092, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35849342

RESUMEN

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation, and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 drives cap-independent translation and promotes expression of NSP1 in an eIF4E-independent and Torin1-resistant manner. Upon expression, NSP1 further enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin1. We conclude that the combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.


Asunto(s)
SARS-CoV-2 , Proteínas no Estructurales Virales , Regiones no Traducidas 5' , Secuencia de Bases , COVID-19/virología , Factor 4E Eucariótico de Iniciación/genética , Humanos , Biosíntesis de Proteínas , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Viral/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA