Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Infect Dis (Auckl) ; 13: 1178633720923657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528224

RESUMEN

BACKGROUND: To properly clean and disinfect hospital mattresses, bed manufacturers recommend a 3- to 6-step process to remove all pathogenic bacteria. An alternative is to use a removable barrier on the mattress, which is laundered after each use. The current study was to determine efficacy of a commercial laundry process in eliminating Clostridioides difficile (C diff) spores, Mycobacterium terrae (M terrae), methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa (P aeruginosa), Klebsiella pneumoniae (K pneumoniae), and Escherichia coli (E coli) from a barrier. METHODS: A test barrier received 3 unique microbial suspensions in separate locations, each suspension having a known quantity of specific microorganisms: C diff spores, M terrae, and a mixed suspension of MRSA, S aureus, P aeruginosa, K pneumoniae, and E coli. A wash load contained the test barrier and 11 additional ballast barriers. Various soils were spread onto the barriers to simulate heavy soiling that may occur in a wash load: Each barrier received a small amount of mixed soil, 50% received urine, 25% received blood, and 25% received a large amount of additional mixed soil. The load was laundered using 71°C (160°F) water, detergent, and chlorine bleach, with final drying at 71°C (160°F). After laundering, remaining colony-forming units (CFUs) of each microorganism were counted at the applied locations. Each test was replicated 3 times. Industry-accepted methods were used to produce suspensions, apply inoculum, and recover organisms after laundering. RESULTS: Before laundering, test barriers contained at least 7.0 log10 cfu/mL of each microorganism distributed over 103 cm2. After laundering, in all cases, no residual CFUs were detected over the test area, resulting in greater than 6.0 log10 reductions for every organism. (P < .05). CONCLUSIONS: Under extreme test conditions including the presence of soil, the laundry process removed all detectable pathogenic bacteria and spores from the barrier.

3.
PDA J Pharm Sci Technol ; 66(4): 333-45, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22767882

RESUMEN

The recent developments on the use of e-pedigree to identify the chain of custody of drugs suggests the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. RFID technology is used mainly for valuable commodities such as pharmaceutical products while incorporating additional functionalities like monitoring environmental variables to ensure product safety and quality. In its guidance for the use of RFID technologies for drugs (Compliance Policy Guide Section 400.210), the Food and Drug Administration outlined multiple parameters that would apply to any study or application using RFID. However, drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application were excluded mainly due to concerns about the effects of radio frequency radiation (thermal and/or non-thermal) on biologics. Even though the thermal effects of radio frequency on biologics are relatively well understood, there are few studies in the literature about the non-thermal effects of radio frequency with regards to the protein structure integrity. In this paper, we analyze the non-thermal effects of radio frequency radiation by exposing a wide variety of biologics including biopharmaceuticals with vaccines, hormones, and immunoglobulins, as well as cellular blood products such as red blood cells and whole blood-derived platelets as well as fresh frozen plasma. In order to represent the majority of the frequency spectrum used in RFID applications, five different frequencies (13.56 MHz, 433 MHz, 868 MHz, 915 MHz, and 2.4 GHz) are used to account for the most commonly used international frequency bands for RFID. With the help of specialized radio frequency signal-generating hardware, magnetic and electromagnetic fields are created around the exposed products with power levels greater than Federal Communications Commission-regulated limits. The in vitro test results on more than 100 biopharmaceutical products from eight major pharmaceutical companies as well, as different blood products, show no non-thermal effect by radio frequency radiation. LAY ABSTRACT: Forthcoming requirements, such as the California Board of Pharmacy Track and Trace initiative regarding the use of e-pedigree to identify the chain of custody of drugs, suggest the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. When used for pharmaceuticals, RFID technology can support additional functionalities like monitoring temperature to ensure product safety. In its guidance for the use of RFID technologies for drugs, the Food and Drug Administration outlined multiple parameters that would apply to pilot studies using RFID while excluding drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application due to concerns about the effects of radio frequency radiation on biologics. Even though the effects of radio frequency on biologics due to temperature changes are relatively well understood, there are few studies in the literature about other effects of radio frequency that can occur without a noticeable change in temperature. In this paper, we expose a wide variety of biologics including biopharmaceuticals to radio frequency radiation at different frequencies, as well as cellular blood products and plasma to high frequency radiation. The in vitro test results show no detectable effect due to radio frequency radiation.


Asunto(s)
Productos Biológicos , Dispositivo de Identificación por Radiofrecuencia , Seguridad de Productos para el Consumidor , Campos Electromagnéticos , Eritrocitos/efectos de la radiación , Técnicas In Vitro , Preparaciones Farmacéuticas , Ondas de Radio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA