Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 149(1): 137-45, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464326

RESUMEN

Functioning as key players in cellular regulation of membrane curvature, BAR domain proteins bend bilayers and recruit interaction partners through poorly understood mechanisms. Using electron cryomicroscopy, we present reconstructions of full-length endophilin and its N-terminal N-BAR domain in their membrane-bound state. Endophilin lattices expose large areas of membrane surface and are held together by promiscuous interactions between endophilin's amphipathic N-terminal helices. Coarse-grained molecular dynamics simulations reveal that endophilin lattices are highly dynamic and that the N-terminal helices are required for formation of a stable and regular scaffold. Furthermore, endophilin accommodates different curvatures through a quantized addition or removal of endophilin dimers, which in some cases causes dimerization of endophilin's SH3 domains, suggesting that the spatial presentation of SH3 domains, rather than affinity, governs the recruitment of downstream interaction partners.


Asunto(s)
Aciltransferasas/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/ultraestructura , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas
2.
Cell ; 137(2): 191-6, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19379681

RESUMEN

Membrane-shaping proteins of the BAR domain superfamily are determinants of organelle biogenesis, membrane trafficking, cell division, and cell migration. An upsurge of research now reveals new principles of BAR domain-mediated membrane remodeling, enhancing our understanding of membrane curvature-mediated information processing.


Asunto(s)
Proteínas de la Membrana/metabolismo , Animales , Membrana Celular/química , Membrana Celular/ultraestructura , Citoesqueleto/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Estructura Terciaria de Proteína
3.
Cell ; 132(5): 807-17, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329367

RESUMEN

BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Animales , Células COS , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/ultraestructura , Chlorocebus aethiops , Microscopía por Crioelectrón , Dinaminas/metabolismo , Proteínas de Unión a Ácidos Grasos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Liposomas/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína , Transfección
4.
J Biol Chem ; 292(46): 18760-18774, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28842499

RESUMEN

ATP7B is a copper-transporting P1B-type ATPase (Cu-ATPase) with an essential role in human physiology. Mutations in ATP7B cause the potentially fatal Wilson disease, and changes in ATP7B expression are observed in several cancers. Despite its physiologic importance, the biochemical information about ATP7B remains limited because of a complex multidomain organization of the protein. By analogy with the better characterized prokaryotic Cu-ATPases, ATP7B is assumed to be a single-chain monomer. We show that in eukaryotic cells, human ATP7B forms dimers that can be purified following solubilization. Deletion of the four N-terminal metal-binding domains, characteristic for human ATP7B, does not disrupt dimerization, i.e. the dimer interface is formed by the domains that are conserved among Cu-ATPases. Unlike the full-length ATP7B, which is targeted to the trans-Golgi network, 1-4ΔMBD-7B is targeted primarily to vesicles. This result and the analysis of differentially tagged ATP7B variants indicate that the dimeric structure is retained during ATP7B trafficking between the intracellular compartments. Purified dimeric species of 1-4ΔMBD-7B were characterized by a negative stain electron microscopy in the presence of ADP/MgCl2 Single-particle analysis yielded a low-resolution 3D model that provides the first insight into an overall architecture of a human Cu-ATPase, positions of the main domains, and a dimer interface.


Asunto(s)
ATPasas Transportadoras de Cobre/química , ATPasas Transportadoras de Cobre/metabolismo , Multimerización de Proteína , Cobre/metabolismo , ATPasas Transportadoras de Cobre/genética , Cristalografía por Rayos X , Células HEK293 , Degeneración Hepatolenticular/genética , Degeneración Hepatolenticular/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Transporte de Proteínas
5.
Proc Natl Acad Sci U S A ; 111(5): 1772-7, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449920

RESUMEN

Using electron microscopy and fitting of crystal structures, we present the 3D reconstruction of ligand-induced dimers of intact receptor tyrosine kinase, KIT. We observe that KIT protomers form close contacts throughout the entire structure of ligand-bound receptor dimers, and that the dimeric receptors adopt multiple, defined conformational states. Interestingly, the homotypic interactions in the membrane proximal Ig-like domain of the extracellular region differ from those observed in the crystal structure of the unconstrained extracellular regions. We observe two prevalent conformations in which the tyrosine kinase domains interact asymmetrically. The asymmetric arrangement of the cytoplasmic regions may represent snapshots of molecular interactions occurring during trans autophosphorylation. Moreover, the asymmetric arrangements may facilitate specific intermolecular interactions necessary for trans phosphorylation of different KIT autophosphorylation sites that are required for stimulation of kinase activity and recruitment of signaling proteins by activated KIT.


Asunto(s)
Multimerización de Proteína , Proteínas Proto-Oncogénicas c-kit/química , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/química , Factor de Células Madre/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-kit/ultraestructura
6.
Trends Biochem Sci ; 37(12): 526-33, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23058040

RESUMEN

Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the Bin/amphiphysin/Rvs (BAR) domain proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR domain proteins sense, stabilize, and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Membrana Celular/química , Proteínas de la Membrana/química , Animales , Proteínas de Drosophila/química , Endocitosis , Factores de Transcripción Forkhead/química , Humanos , Proteínas del Tejido Nervioso/química , Estructura Terciaria de Proteína
7.
Proc Natl Acad Sci U S A ; 110(51): 20491-6, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297923

RESUMEN

Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae, showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.


Asunto(s)
Citosol/metabolismo , Membranas Intracelulares/metabolismo , Membrana Dobles de Lípidos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/metabolismo , Transporte Biológico Activo/fisiología , Cobre/metabolismo , Activación Enzimática/fisiología , Prueba de Complementación Genética , Humanos , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
8.
Biophys J ; 104(2): 396-403, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23442861

RESUMEN

Endophilin is a key protein involved in clathrin-mediated endocytosis. Previous computational and experimental work suggested that the N-terminal helix is embedded into the membrane to induce curvature; however, the role of the SH3 domain remains controversial. To address this issue, we performed computer simulations of the endophilin dimer in solution to understand the interaction between the N-BAR and SH3 domains and its effect on biological function. We predict that the helix binds to the SH3 domain through hydrophobic and salt-bridge interactions. This protects the hydrophobic residues on both domains and keeps the SH3 domain near the end of the N-BAR domain, in agreement with previous experimental results. The complex has a binding strength similar to a few hydrogen bonds (13.0 ± 0.6 kcal/mol), and the SH3 domain stabilizes the structure of the N-terminal helix in solution. Electrostatic calculations show a large region of strongly positive electrostatic potential near the N-terminal that can orient the helix toward the membrane and likely embed the helix into the membrane surface. This predicted mechanism suggests that endophilin can select for both curvature and electrostatic potential when interacting with membranes, highlighting the importance of the SH3 domain in regulating the function of endophilin.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Dominios Homologos src , Aciltransferasas/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Soluciones , Electricidad Estática , Termodinámica
9.
Biophys J ; 104(2): 404-11, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23442862

RESUMEN

Endophilin N-BAR (N-terminal helix and Bin/amphiphysin/Rvs) domain tubulates and vesiculates lipid membranes in vitro via its crescent-shaped dimer and four amphipathic helices that penetrate into membranes as wedges. Like F-BAR domains, endophilin N-BAR also forms a scaffold on membrane tubes. Unlike F-BARs, endophilin N-BARs have N-terminal H0 amphipathic helices that are proposed to interact with other N-BARs in oligomer lattices. Recent cryo-electron microscopy reconstructions shed light on the organization of the N-BAR lattice coats on a nanometer scale. However, because of the resolution of the reconstructions, the precise positioning of the amphipathic helices is still ambiguous. In this work, we applied a coarse-grained model to study various membrane remodeling scenarios induced by endophilin N-BARs. We found that H0 helices of N-BARs prefer to align in an antiparallel manner at two ends of the protein to form a stable lattice. The deletion of H0 helices causes disruption of the lattice. In addition, we analyzed the persistence lengths of the protein-coated tubes and found that the stiffness of endophilin N-BAR-coated tubules qualitatively agrees with previous experimental work studying N-BAR-coated tubules. Large-scale simulations on membrane liposomes revealed a systematic relation between H0 helix density and local membrane curvature fluctuations. The data also suggest that the H0 helix is required for BARs to form organized structures on the liposome, further illustrating its important function.


Asunto(s)
Aciltransferasas/química , Membrana Celular/metabolismo , Aciltransferasas/ultraestructura , Animales , Liposomas/metabolismo , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas
10.
Biophys J ; 105(3): 711-9, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931319

RESUMEN

Key cellular processes are frequently accompanied by protein-facilitated shape changes in the plasma membrane. N-BAR-domain protein modules generate curvature by means of complex interactions with the membrane surface. The way they assemble and the mechanism by which they operate are largely dependent on their binding density. Although the mechanism at lower densities has recently begun to emerge, how membrane scaffolds form at high densities remains unclear. By combining electron microscopy and multiscale simulations, we show that N-BAR proteins at high densities can transform a lipid vesicle into a 3D tubular network. We show that this process is a consequence of excess adhesive energy combined with the local stiffening of the membrane, which occurs in a narrow range of mechanical properties of both the membrane and the protein. We show that lipid diffusion is significantly reduced by protein binding at this density regime and even more in areas of high Gaussian curvature, indicating a potential effect on molecular transport in cells. Finally, we reveal that the breaking of the bilayer topology is accompanied by the nematic arrangement of the protein on the surface, a structural motif that likely drives the formation of reticular structures in living cells.


Asunto(s)
Liposomas/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Difusión , Membrana Dobles de Lípidos/química , Liposomas/ultraestructura , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
11.
J Membr Biol ; 246(12): 903-13, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24036897

RESUMEN

Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.


Asunto(s)
Membrana Celular/metabolismo , Cobre/metabolismo , Metalochaperonas/metabolismo , Sustitución de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Transportadoras de Cobre , Humanos , Metalochaperonas/química , Metalochaperonas/genética , Modelos Moleculares , Chaperonas Moleculares , Mutación , Unión Proteica , Conformación Proteica
12.
Nature ; 441(7093): 637-40, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16738660

RESUMEN

Assembly of multi-component supramolecular machines is fundamental to biology, yet in most cases, assembly pathways and their control are poorly understood. An example is the type III secretion machine, which mediates the transfer of bacterial virulence proteins into host cells. A central component of this nanomachine is the needle complex or injectisome, an organelle associated with the bacterial envelope that is composed of a multi-ring base, an inner rod, and a protruding needle. Assembly of this organelle proceeds in sequential steps that require the reprogramming of the secretion machine. Here we provide evidence that, in Salmonella typhimurium, completion of the assembly of the inner rod determines the size of the needle substructure. Assembly of the inner rod, which is regulated by the InvJ protein, triggers conformational changes on the cytoplasmic side of the injectisome, reprogramming the secretion apparatus to stop secretion of the needle protein.


Asunto(s)
Salmonella typhimurium/química , Salmonella typhimurium/metabolismo , Muerte Celular , Genes Bacterianos/genética , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Mutación/genética , Salmonella typhimurium/genética , Salmonella typhimurium/ultraestructura
13.
Curr Top Membr ; 69: 97-112, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23046648

RESUMEN

Owing to their redox and coordination chemistry copper ions play essential roles in cellular function. Research over the past 20 years has shed much light on the biochemistry of copper homeostasis, and the emergence of high-resolution crystal structures for many of the proteins that partake in cellular copper biology have began to provide insight into the molecular mechanisms by which cells handle this important metal. A notable gap in our understanding is related to the process by which cells acquire copper ions. This chapter describes recent progress in the structure determination of cellular copper uptake transporters and how the emerging structural information aids understanding of the molecular mechanisms that govern cellular copper acquisition and distribution.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/química , Transportador de Cobre 1 , Humanos , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(11): 4237-42, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19240214

RESUMEN

Copper uptake proteins (CTRs), mediate cellular acquisition of the essential metal copper in all eukaryotes. Here, we report the structure of the human CTR1 protein solved by electron crystallography to an in plane resolution of 7 A. Reminiscent of the design of traditional ion channels, trimeric hCTR1 creates a pore that stretches across the membrane bilayer at the interface between the subunits. Assignment of the helices identifies the second transmembrane helix as the key element lining the pore, and reveals how functionally important residues on this helix could participate in Cu(I)-coordination during transport. Aligned with and sealing both ends of the pore, extracellular and intracellular domains of hCTR1 appear to provide additional metal binding sites. Consistent with the existence of distinct metal binding sites, we demonstrate that hCTR1 stably binds 2 Cu(I)-ions through 3-coordinate Cu-S bonds, and that mutations in one of these putative binding sites results in a change of coordination chemistry.


Asunto(s)
Proteínas de Transporte de Catión/química , Sitios de Unión/genética , Proteínas de Transporte de Catión/genética , Cobre/química , Transportador de Cobre 1 , Microscopía por Crioelectrón , Cristalización , Humanos , Mutación , Conformación Proteica
16.
J Struct Biol ; 174(3): 542-51, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21426941

RESUMEN

Glutamate-mediated neurotransmission through ligand-gated, ionotropic glutamate receptors is the main form of excitatory neurotransmission in the vertebrate central nervous system where it plays central roles in learning, memory and a variety of disorders. Acting as auxiliary subunits, transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) regulatory proteins (TARPs) are essential regulators for glutamate-mediated neurotransmission in the central nervous system. Here, we report the first electron crystallographic reconstructions of full-length mouse stargazin (γ-2) at ∼20Å resolution in a membrane bilayer environment. Formation of ordered arrays required anionic lipids and was modulated by cholesterol and monovalent cations. Projection structures revealed that the C-termini of stargazin monomers closely interacted with the bilayer surface in an extended conformation that placed the C-terminal PDZ-binding motif ∼100Å away from the transmembrane domain and in close proximity to a membrane re-entrant region. The C-termini interaction with the bilayer was modulated by the ionic strength of the solution and overall protein secondary structure increased when membrane-bound. Our data suggest that stargazin interactions with and within the membrane play significant roles in TARP structure and directly visualize TARP functional mechanisms essential for AMPAR trafficking and clustering.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Cristalografía/métodos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Animales , Aniones/química , Canales de Calcio/ultraestructura , Colesterol/química , Dimerización , Imagenología Tridimensional , Lípidos/química , Ratones , Dominios PDZ , Estructura Terciaria de Proteína , Receptores AMPA/química , Receptores AMPA/metabolismo
17.
Proc Natl Acad Sci U S A ; 105(5): 1511-5, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18216238

RESUMEN

The six-transmembrane helix (6 TM) tetrameric cation channels form the largest ion channel family, some members of which are voltage-gated and others are not. There are no reported channel structures to match the wealth of functional data on the non-voltage-gated members. We determined the structure of the transmembrane regions of the bacterial cyclic nucleotide-regulated channel MlotiK1, a non-voltage-gated 6 TM channel. The structure showed how the S1-S4 domain and its associated linker can serve as a clamp to constrain the gate of the pore and possibly function in concert with ligand-binding domains to regulate the opening of the pore. The structure also led us to hypothesize a new mechanism by which motions of the S6 inner helices can gate the ion conduction pathway at a position along the pore closer to the selectivity filter than the canonical helix bundle crossing.


Asunto(s)
Alphaproteobacteria/metabolismo , Proteínas Bacterianas/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales de Potasio/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Datos de Secuencia Molecular , Canales de Potasio/genética , Conformación Proteica
18.
Trends Biochem Sci ; 31(2): 106-13, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16406532

RESUMEN

Transmembrane (TM) proteins constitute 15-30% of the genome, but <1% of the structures in the Protein Data Bank. This discrepancy is disturbing, and emphasizes that structure determination of TM proteins remains challenging. The challenge is greatest for proteins from eukaryotes, the structures of which remain intractable despite tremendous advances that have been made towards structure determination of bacterial TM proteins. Notably, >50% of the membrane protein families in eukaryotes lack bacterial homologs. Therefore, it is conceivable that many more years will elapse before high-resolution structures of eukaryotic TM proteins emerge. Until then, integrated approaches that combine biochemical and computational analyses with low-resolution structures are likely to have increasingly important roles in providing frameworks for the mechanistic understanding of membrane-protein structure and function.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Bases de Datos de Proteínas , Proteínas de la Membrana/genética , Modelos Moleculares
19.
J Struct Biol ; 170(3): 501-12, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20123128

RESUMEN

FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Compuestos Ferrosos/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Cristalografía por Rayos X , Proteínas de Unión al GTP/genética , Cinética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Homología Estructural de Proteína
20.
J Membr Biol ; 234(2): 113-23, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20224886

RESUMEN

Membrane proteins of the CTR family mediate cellular copper uptake in all eukaryotic cells and have been shown to participate in uptake of platinum-based anticancer drugs. Despite their importance for life and the clinical treatment of malignancies, directed biochemical studies of CTR proteins have been difficult because high-resolution structural information is missing. Building on our recent 7A structure of the human copper transporter hCTR1, we present the results of an extensive tryptophan-scanning analysis of hCTR1 and its distant relative, yeast CTR3. The comparative analysis supports our previous assignment of the transmembrane helices and shows that most functionally and structurally important residues are clustered around the threefold axis of CTR trimers or engage in helix packing interactions. The scan also identified residues that may play roles in interactions between CTR trimers and suggested that the first transmembrane helix serves as an adaptor that allows evolutionarily diverse CTRs to adopt the same overall structure. Together with previous biochemical and biophysical data, the results of the tryptophan scan are consistent with a mechanistic model in which copper transport occurs along the center of the trimer.


Asunto(s)
Antiportadores/química , Proteínas de Transporte de Catión/química , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Triptófano/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antiportadores/genética , Proteínas de Transporte de Catión/genética , Cobre/metabolismo , Transportador de Cobre 1 , Humanos , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Proteínas SLC31 , Proteínas de Saccharomyces cerevisiae/genética , Triptófano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA