Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684713

RESUMEN

Fiber-reinforced polymer composites are an excellent choice for bridge decks due to high strength, lightweight, resistance to corrosion, and long-term durability with a 100-year design life. Structural health monitoring is useful for the long-term assessment of the condition of the bridge structure and obtaining a response to complex loads considering environmental conditions. Bridge structures have been studied primarily using distributed fiber optic sensing, such as Brillouin scattering; however, critical events, including damage detection, can be missed due to low spatial resolution. There is also a critical need to conduct a comprehensive study of static and dynamic loading simultaneously for fiber-reinforced composite bridge structures. In this study, a novel approach was implemented using two sensor technologies, optical frequency domain reflectometry and fiber Bragg grating-based sensors, embedded in a glass-fiber-reinforced composite bridge deck to simultaneously monitor the deformation response of the bridge structure. The optical frequency domain reflectometry sensor utilizing Rayleigh scattering provides high spatial strain resolution were positioned strategically based on expected stress distributions to measure strain in the longitudinal, transverse, and diagonal directions along the span of the composite bridge. Furthermore, fiber Bragg grating based sensors are used to monitor the response to dynamic vehicular loading and deformations from an automotive-crash-type event on the bridge structure. To monitor environmental variables such as temperature, a custom wireless configured sensor package was developed for the study and integrated with a composite bridge located in Morgan County, Tennessee. Additionally, a triaxial accelerometer was used to monitor the vehicular dynamic loading of the composite bridge deck in parallel with fiber Bragg grating sensors. When appropriate, mid-point displacements were compared with strain-distribution measurements from the fiber optic sensor-based data.


Asunto(s)
Fibras Ópticas , Polímeros de Estímulo Receptivo , Tecnología de Fibra Óptica , Polímeros , Temperatura
2.
Polymers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274024

RESUMEN

Unsaturated polyester resin (UPR) systems are extensively used in composite materials for applications in the transportation, marine, and infrastructure sectors. There are continually evolving formulations of UPRs that need to be evaluated and optimized for processing. Differential Scanning Calorimetry (DSC) provides valuable insight into the non-isothermal and isothermal behavior of UPRs within a prescribed temperature range. In the present work, non-isothermal DSC tests were carried out between temperatures of 0.0 °C and 250 °C, through different heating and cooling ramp rates. The isothermal DSC tests were carried out between 0.0 and 170 °C. The instantaneous rate of cure of the tested temperatures were measured. The application of an autocatalytic model in a calculator was used to simulate curing behaviors under different processing conditions. As the temperature increased from 10 °C up to 170 °C, the rate of cure reduced, and the heat of reaction increased. The simulated cure behavior from the DSC data showed that the degree of cure (α) maximum value of 71.25% was achieved at the highest heating temperature of 85 °C. For the low heating temperature, i.e., 5 °C, the maximum degree of cure (α) did not exceed 12% because there was not enough heat to activate the catalyst to crosslink further.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA