Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8043, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114482

RESUMEN

The complex neuromuscular network that controls body movements is the target of severe diseases that result in paralysis and death. Here, we report the development of a robust and efficient self-organizing neuromuscular junction (soNMJ) model from human pluripotent stem cells that can be maintained long-term in simple adherent conditions. The timely application of specific patterning signals instructs the simultaneous development and differentiation of position-specific brachial spinal neurons, skeletal muscles, and terminal Schwann cells. High-content imaging reveals self-organized bundles of aligned muscle fibers surrounded by innervating motor neurons that form functional neuromuscular junctions. Optogenetic activation and pharmacological interventions show that the spinal neurons actively instruct the synchronous skeletal muscle contraction. The generation of a soNMJ model from spinal muscular atrophy patient-specific iPSCs reveals that the number of NMJs and muscle contraction is severely affected, resembling the patient's pathology. In the future, the soNMJ model could be used for high-throughput studies in disease modeling and drug development. Thus, this model will allow us to address unmet needs in the neuromuscular disease field.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Humanos , Unión Neuromuscular/patología , Neuronas Motoras/fisiología , Fibras Musculares Esqueléticas/patología , Atrofia Muscular Espinal/patología , Músculo Esquelético/patología , Células Madre Pluripotentes Inducidas/patología
2.
Cell Stem Cell ; 26(2): 172-186.e6, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31956040

RESUMEN

Neuromuscular networks assemble during early human embryonic development and are essential for the control of body movement. Previous neuromuscular junction modeling efforts using human pluripotent stem cells (hPSCs) generated either spinal cord neurons or skeletal muscles in monolayer culture. Here, we use hPSC-derived axial stem cells, the building blocks of the posterior body, to simultaneously generate spinal cord neurons and skeletal muscle cells that self-organize to generate human neuromuscular organoids (NMOs) that can be maintained in 3D for several months. Single-cell RNA-sequencing of individual organoids revealed reproducibility across experiments and enabled the tracking of the neural and mesodermal differentiation trajectories as organoids developed and matured. NMOs contain functional neuromuscular junctions supported by terminal Schwann cells. They contract and develop central pattern generator-like neuronal circuits. Finally, we successfully use NMOs to recapitulate key aspects of myasthenia gravis pathology, thus highlighting the significant potential of NMOs for modeling neuromuscular diseases in the future.


Asunto(s)
Organoides , Células Madre Pluripotentes , Femenino , Humanos , Unión Neuromuscular , Embarazo , Reproducibilidad de los Resultados , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA