Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Physiol ; 601(8): 1353-1370, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36866700

RESUMEN

Optical mapping is a widely used tool to record and visualize the electrophysiological properties in a variety of myocardial preparations such as Langendorff-perfused isolated hearts, coronary-perfused wedge preparations, and cell culture monolayers. Motion artifact originating from the mechanical contraction of the myocardium creates a significant challenge to performing optical mapping of contracting hearts. Hence, to minimize the motion artifact, cardiac optical mapping studies are mostly performed on non-contracting hearts, where the mechanical contraction is removed using pharmacological excitation-contraction uncouplers. However, such experimental preparations eliminate the possibility of electromechanical interaction, and effects such as mechano-electric feedback cannot be studied. Recent developments in computer vision algorithms and ratiometric techniques have opened the possibility of performing optical mapping studies on isolated contracting hearts. In this review, we discuss the existing techniques and challenges of optical mapping of contracting hearts.


Asunto(s)
Corazón , Miocardio , Potenciales de Acción/fisiología , Corazón/diagnóstico por imagen , Corazón/fisiología
2.
Europace ; 25(12)2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38006390

RESUMEN

AIMS: The mechanisms of transition from regular rhythms to ventricular fibrillation (VF) are poorly understood. The concordant to discordant repolarization alternans pathway is extensively studied; however, despite its theoretical centrality, cannot guide ablation. We hypothesize that complex repolarization dynamics, i.e. oscillations in the repolarization phase of action potentials with periods over two of classic alternans, is a marker of electrically unstable substrate, and ablation of these areas has a stabilizing effect and may reduce the risk of VF. To prove the existence of higher-order periodicities in human hearts. METHODS AND RESULTS: We performed optical mapping of explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Signals recorded from the right ventricle endocardial surface were processed to detect global and local repolarization dynamics during rapid pacing. A statistically significant global 1:4 peak was seen in three of six hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of Periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. CONCLUSION: We present evidence of complex higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex vivo human hearts. We infer that the oscillation of the calcium cycling machinery is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability and may provide targets for substrate-based ablation of VF.


Asunto(s)
Ventrículos Cardíacos , Corazón , Humanos , Arritmias Cardíacas , Fibrilación Ventricular/cirugía , Potenciales de Acción/fisiología
3.
Biophys J ; 119(2): 460-469, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32645291

RESUMEN

The monophasic action potential (MAP) is a near replica of the transmembrane potential recorded when an electrode is pushed firmly against cardiac tissue. Despite its many practical uses, the mechanism of MAP signal generation and the reason it is so different from unipolar recordings are not completely known and are a matter of controversy. In this work, we describe a method to simulate realistic MAP and intermediate forms, which are multiphasic electrograms different from an ideal MAP. The key ideas of our method are the formation of compressed zones and junctional spaces-regions of the extracellular and bath or blood pool directly in contact with electrodes that exhibit a pressure-induced reduction in electrical conductivity-and the presence of a complex network of passive components that acts as a high-pass filter to distort and attenuate the signal that reaches the recording amplifier. The network is formed by the interaction between the passive tissue properties and the double-layer capacitance of electrodes. The MAP and intermediate forms reside on a continuum of signals, which can be generated by the change of the model parameters. Our model helps to decipher the mechanisms of signal generation and can lead to a better design for electrodes, recording amplifiers, and experimental setups.


Asunto(s)
Corazón , Potenciales de Acción , Conductividad Eléctrica , Electrodos , Potenciales de la Membrana
4.
Phys Rev Lett ; 118(16): 168101, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28474934

RESUMEN

It is widely believed that one major life-threatening transition to chaotic fibrillation occurs via spiral-wave breakup that is preceded by spatiotemporal dispersion of refractoriness due to alternations in the duration of the cardiac action potential (AP). However, recent clinical and experimental evidence suggests that other characteristics of the AP may contribute to, and perhaps drive, this dangerous dynamical instability. To identify the relative roles of AP characteristics, we performed experiments in rabbit hearts under conditions to minimize AP duration dynamics which unmasked pronounced AP amplitude alternans just before the onset of fibrillation. We used a simplified ionic cell model to derive a return map and a stability condition that elucidates a novel underlying mechanism for AP alternans and spiral breakup. We found that inactivation of the sodium current is key to developing amplitude alternans and is directly connected to conduction block and initiation of arrhythmias. Simulations in 2D where AP amplitude alternation led to turbulence confirm our hypothesis.

5.
Physiol Meas ; 45(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38772394

RESUMEN

Objective.Temperature plays a crucial role in influencing the spatiotemporal dynamics of the heart. Electrical instabilities due to specific thermal conditions typically lead to early period-doubling bifurcations and beat-to-beat alternans. These pro-arrhythmic phenomena manifest in voltage and calcium traces, resulting in compromised contractile behaviors. In such intricate scenario, dual optical mapping technique was used to uncover unexplored multi-scale and nonlinear couplings, essential for early detection and understanding of cardiac arrhythmia.Approach.We propose a methodological analysis of synchronized voltage-calcium signals for detecting alternans, restitution curves, and spatiotemporal alternans patterns under different thermal conditions, based on integral features calculation. To validate our approach, we conducted a cross-species investigation involving rabbit and guinea pig epicardial ventricular surfaces and human endocardial tissue under pacing-down protocols.Main results.We show that the proposed integral feature, as the area under the curve, could be an easily applicable indicator that may enhance the predictability of the onset and progression of cardiac alternans. Insights into spatiotemporal correlation analysis of characteristic spatial lengths across different heart species were further provided.Significance.Exploring cross-species thermoelectric features contributes to understanding temperature-dependent proarrhythmic regimes and their implications on coupled spatiotemporal voltage-calcium dynamics. The findings provide preliminary insights and potential strategies for enhancing arrhythmia detection and treatment.


Asunto(s)
Calcio , Análisis Espacio-Temporal , Animales , Cobayas , Conejos , Calcio/metabolismo , Humanos , Temperatura , Corazón/fisiología , Fenómenos Electrofisiológicos , Imagen Óptica , Especificidad de la Especie
6.
Artículo en Inglés | MEDLINE | ID: mdl-39001761

RESUMEN

BACKGROUND: The significance of autonomic dysfunction in premature ventricular contraction-induced cardiomyopathy (PVC-CM) remain unknown. OBJECTIVE: Utilizing a novel "dual stressor" provocative challenge combining exercise with premature ventricular contraction (PVCs), the authors characterized the functional and molecular mechanisms of cardiac autonomic (cardiac autonomic nervous system) remodeling in a PVC-CM animal model. METHODS: In 15 canines (8 experimental, 7 sham), we implanted pacemakers and neurotelemetry devices and subjected animals to 12 weeks of bigeminal PVCs to induce PVC-CM. Sympathetic nerve activity (SNA), vagal nerve activity (VNA), and heart rate were continuously recorded before, during, and after treadmill exercise challenge with and without PVCs, at baseline and after development of PVC-CM. Western blot and enzyme-linked immunosorbent assay were used to evaluate molecular markers of neural remodeling. RESULTS: Exercise triggered an increase in both SNA and VNA followed by late VNA withdrawal. With PVCs, the degree of exercise-induced SNA augmentation was magnified, whereas late VNA withdrawal became blunted. After PVC-CM development, SNA was increased at rest but failed to adequately augment during exercise, especially with PVCs, coupled with impaired VNA and heart rate recovery after exercise. In the remodeled cardiac autonomic nervous system, there was widespread sympathetic hyperinnervation and elevated transcardiac norepinephrine levels but unchanged parasympathetic innervation, indicating sympathetic overload. However, cardiac nerve growth factor was paradoxically downregulated, suggesting an antineurotrophic counteradaptive response to PVC-triggered sympathetic overload. CONCLUSIONS: Sympathetic overload, sympathetic dysfunction, and parasympathetic dysfunction in PVC-CM are unmasked by combined exercise and PVC challenge. Reduced cardiac neurotrophic factor might underlie the mechanisms of this dysfunction. Neuromodulation therapies to restore autonomic function could constitute a novel therapeutic approach for PVC-CM.

7.
Biophys J ; 105(2): 523-32, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23870273

RESUMEN

Detailed knowledge of tissue response to both systolic and diastolic shock is critical for understanding defibrillation. Diastolic field stimulation has been much less studied than systolic stimulation, particularly regarding transient virtual anodes. Here we investigated high-voltage-induced polarization and activation patterns in response to strong diastolic shocks of various durations and of both polarities, and tested the hypothesis that the activation versus shock duration curve contains a local minimum for moderate shock durations, and it grows for short and long durations. We found that 0.1-0.2-ms shocks produced slow and heterogeneous activation. During 0.8-1 ms shocks, the activation was very fast and homogeneous. Further shock extension to 8 ms delayed activation from 1.55 ± 0.27 ms and 1.63 ± 0.21 ms at 0.8 ms shock to 2.32 ± 0.41 ms and 2.37 ± 0.3 ms (N = 7) for normal and opposite polarities, respectively. The traces from hyperpolarized regions during 3-8 ms shocks exhibited four different phases: beginning negative polarization, fast depolarization, slow depolarization, and after-shock increase in upstroke velocity. Thus, the shocks of >3 ms in duration created strong hyperpolarization associated with significant delay (P < 0.05) in activation compared with moderate shocks of 0.8 and 1 ms. This effect appears as a dip in the activation-versus-shock-duration curve.


Asunto(s)
Diástole , Cardioversión Eléctrica , Modelos Cardiovasculares , Pericardio/fisiología , Animales , Mapeo Epicárdico , Técnicas In Vitro , Imagen de Perfusión Miocárdica , Conejos , Factores de Tiempo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38083080

RESUMEN

Cardiac electrical dynamics show complex space-time instabilities, like period-doubling bifurcation and beat-to-beat alternans, known to occur as pro-arrhythmic phenomena and linked to membrane voltage and intracellular calcium kinetics. Besides, cellular ionic dynamics are critically affected by temperature oscillations, further enhancing the complexity of such arrhythmias precursors that lead to irregular cardiac contraction. In this complex scenario, fluorescence dual optical mapping techniques allow the unveiling of nonlinear and multi-scale couplings. In this contribution, we propose a novel methodological analysis of synchronous dual voltage-calcium traces obtained from whole rabbit hearts for (i) detecting alternans onset and evolution, (ii) characterizing novel restitution curves, and (iii) defining spatio-temporal alternans patterns at four thermal states. We validate our approach against well-accepted analyses considering complete pacing-down restitution protocols. The proposed methodology computes integral features, e.g., area under the curve, suggesting that a novel, easy-to-use indicator, may advance predictability on alternans onset and evolution, further providing insights into spatio-temporal cardiac analyses.Clinical Relevance- This work introduces new methods for the early detection of cardiac alternans onset and development as precursors of arrhythmias and fibrillation at different temperatures.


Asunto(s)
Calcio , Corazón , Animales , Conejos , Potenciales de Acción , Corazón/diagnóstico por imagen , Arritmias Cardíacas/diagnóstico , Cinética
9.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205562

RESUMEN

Background: Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, is one of the cornerstones of cardiac electrophysiology as it provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., period-4, period-8,...) are expected but have very limited experimental evidence. Methods: We studied explanted human hearts, obtained from the recipients of heart transplantation at the time of surgery, using optical mapping technique with transmembrane voltage-sensitive fluorescent dyes. The hearts were stimulated at an increasing rate until VF was induced. The signals recorded from the right ventricle endocardial surface just before the induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results: A prominent and statistically significant 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local analysis revealed the spatiotemporal distribution of higher-order periods. Period-4 was localized to temporally stable islands. Higher-order oscillations (period-5, 6, and 8) were transient and primarily occurred in arcs parallel to the activation isochrones. Discussion: We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts before VF induction. This result is consistent with the period-doubling route to chaos as a possible mechanism of VF initiation, which complements the concordant to discordant alternans mechanism. The presence of higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation.

10.
medRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662394

RESUMEN

Background: Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., periods 4, 6, 8,...) are expected but have minimal experimental evidence. Methods: We studied explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Optical mapping of the transmembrane potential was performed after staining the hearts with voltage-sensitive fluorescent dyes. Hearts were stimulated at an increasing rate until VF was induced. Signals recorded from the right ventricle endocardial surface prior to induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results were correlated to the underlying electrophysiological characteristics as quantified by restitution curves and conduction velocity. Results: A prominent and statistically significant global 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. Discussion: We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts. We infer from the independence of the period to the underlying restitution properties that the oscillation of the excitation-contraction coupling and calcium cycling mechanisms is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation and may provide targets for substrate-based ablation of VF.

11.
Front Physiol ; 13: 812968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222080

RESUMEN

Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane ionic channels and intracellular calcium concentration ([Ca2+] i ) cycling with emerging spatiotemporal behavior through tissue-level coupling. For example, dynamically induced spatial dispersion of action potential duration, QT prolongation, and alternans are clinical markers for arrhythmia susceptibility in regular and heart-failure patients that originate due to changes of the transmembrane voltage (V m) and [Ca2+] i . We present an optical-mapping methodology that permits simultaneous measurements of the V m - [Ca2+] i signals using a single-camera without cross-talk, allowing quantitative characterization of favorable/adverse cell and tissue dynamical effects occurring from remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally in six different species the existence of a family of excitation wavelengths, we termed semasbestic, that give no change in signal for one dye, and thus can be used to record signals from another dye, guaranteeing zero cross-talk.

12.
Front Physiol ; 13: 794761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035466

RESUMEN

Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize AF or VT sources as ablation targets remain limited by the number of measuring electrodes and signal processing methods to generate high-density local activation time (LAT) and CV maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology and amplitude of bipolar electrograms depend on the direction of propagating electrical wavefront, making identification of low-amplitude signal sources commonly associated with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to wavefront direction, but measurements are susceptible to distal activity. This study proposes a method for local CV calculation from optical mapping measurements, termed the circle method (CM). The local CV is obtained as a weighted sum of CV values calculated along different chords spanning a circle of predefined radius centered at a CV measurement location. As a distinct maximum in LAT differences is along the chord normal to the propagating wavefront, the method is adaptive to the propagating wavefront direction changes, suitable for electrical conductivity characterization of heterogeneous myocardium. In numerical simulations, CM was validated characterizing modeled ablated areas as zones of distinct CV slowing. Experimentally, CM was used to characterize lesions created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands of different penetration depths were used, and a beat-to-beat CV difference analysis was performed to identify CV alternans. Despite being limited to laboratory research, studies based on CM with optical mapping may lead to new translational insights into better-guided ablation therapies.

13.
Am J Physiol Heart Circ Physiol ; 301(1): H209-20, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21536842

RESUMEN

The heterogeneities of electrophysiological properties of cardiac tissue are the main factors that control both arrhythmia induction and maintenance. Although the local increase of extracellular potassium ([K(+)](o)) due to coronary occlusion is a well-established metabolic response to acute ischemia, the role of local [K(+)](o) heterogeneity in phase 1a arrhythmias has yet to be determined. In this work, we created local [K(+)](o) heterogeneity and investigated its role in fast pacing response and arrhythmia induction. The left marginal vein of a Langendorff-perfused rabbit heart was cannulated and perfused separately with solutions containing 4, 6, 8, 10, and 12 mM of K(+). The fluorescence dye was utilized to map the voltage distribution. We tested stimulation rates, starting from 400 ms down to 120 ms, with steps of 5-50 ms. We found that local [K(+)](o) heterogeneity causes action potential (AP) alternans, 2:1 conduction block, and wave breaks. The effect of [K(+)](o) heterogeneity on electrical stability and vulnerability to arrhythmia induction was largest during regional perfusion with 10 mM of K(+). We detected three concurrent dynamics: normally propagating activation when excitation waves spread over tissue perfused with normal K(+), alternating 2:2 rhythm near the border of [K(+)](o) heterogeneity, and 2:1 aperiodicity when propagation was within the high [K(+)](o) area. [K(+)](o) elevation changed the AP duration (APD) restitution and shifted the restitution curve toward longer diastolic intervals and shorter APD. We conclude that spatial heterogeneity of the APD restitution, created with regional elevation of [K(+)](o), can lead to AP instability, 2:1 block, and reentry induction.


Asunto(s)
Potenciales de Acción/fisiología , Fenómenos Electrofisiológicos/fisiología , Espacio Extracelular/fisiología , Potasio/fisiología , Anestésicos Locales/farmacología , Animales , Arritmias Cardíacas/fisiopatología , Estimulación Cardíaca Artificial , Circulación Coronaria/fisiología , Vasos Coronarios/fisiología , Interpretación Estadística de Datos , Estimulación Eléctrica , Espacio Extracelular/metabolismo , Femenino , Colorantes Fluorescentes , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca/fisiología , Técnicas In Vitro , Cinética , Masculino , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Potasio/metabolismo , Conejos
14.
Artículo en Inglés | MEDLINE | ID: mdl-35754518

RESUMEN

Diagnosis and localization of cardiac arrhythmias, especially supraventricular tachycardia (SVT), by inspecting intracardiac signals and performing pacing maneuvers is the core of electrophysiology studies. Acquiring and maintaining complex skill sets can be facilitated by using simulators, allowing the operator to practice in a safe and controlled setting. An electrophysiology simulator should not only display arrhythmias but it has to respond to the user's arbitrary inputs. While, in principle, it is possible to model the heart using a detailed anatomical and cellular model, such a system would be unduly complex and computationally intensive. In this paper, we describe a freely available web-based electrophysiology simulator (http://svtsim.com), which is composed of a visualization/interface unit and a heart model based on a dynamical network. In the network, nodes represent the points of interest, such as the sinus and the atrioventricular nodes, and links model the conduction system and pathways. The dynamics are encoded explicitly in the state machines attached to the nodes and links. Simulated intracardiac signals and surface ECGs are generated from the internal state of the heart model. Reentrant tachycardias, especially various forms of SVT, can emerge in this system in response to the user's actions in the form of pacing maneuvers. Additionally, the resulting arrhythmias respond realistically to various inputs, such as overdrive pacing and delivery of extra stimuli, cardioversion, ablation, and infusion of medications. For nearly a decade, svtsim.com has been used successfully to train electrophysiology practitioners in many institutions. We will present our experience regarding best practices in designing and using electrophysiology simulators for training and testing. We will also discuss the current trends in clinical cardiac electrophysiology and the anticipated next generation electrophysiology simulators.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35754519

RESUMEN

Long-QT is commonly associated with an increased risk of polymorphic ventricular tachycardia from drug therapy. However, not all drugs prolonging QT interval are proarrhythmic. This study aimed to characterize cellular and tissue mechanisms under which QT-interval prolonging drugs and their combination are proarrhythmic, examining arrhythmia susceptibility due to action potential (AP) triangulation and spatial dispersion of action potential duration (APD). Additionally, we aimed to elucidate that Torsades de Pointe (TdP) associated with long-QT are not necessarily caused by early-after-depolarization (EADs) but are related to the presence of AP alternans in both time and space. Isolated Guinea Pig hearts were Langendorff perfused, and optical mapping was done with a voltage dye-sensitive dye. Two commonly used drugs at the beginning of the COVID-19 pandemic, hydroxychloroquine (HCQ) and Azithromycin (AZM), were added to study the effects of QT interval prolongation. Alternans in time and space were characterized by performing restitution pacing protocols. Comparing APs, HCQ prolongs APD during phase-III repolarization, resulting in a higher triangulation ratio than AZM alone or AZM combined with HCQ. Lower triangulation ratios with AZM are associated with phase-II prolongation, lower arrhythmia, and lower incidence of spatially discordant alternans.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35754521

RESUMEN

The shape of the ECG depends on the lead positions but also on the distribution and dispersion of different cell types and their action potential (AP) durations and shapes. We present an interactive JavaScript program that allows fast simulations of the ECG by solving and displaying the dynamics of cardiac cells in tissue using a web browser. We use physiologically accurate ODE models of cardiac cells of different types including SA node, right and left atria, AV node, Purkinje, and right and left ventricular cells with dispersion that accounts for apex-to-base and epi-to-endo variations. The software allows for real-time variations for each cell type and their spatial range so as to identify how the shape of the ECG varies as a function of cell type, distribution, excitation duration and AP shape. The propagation of the wave is visualized in real time through all the regions as parameters are kept fixed or varied to modify ECG morphology. The code solves thousands of simulated cells in real time and is independent of operating system, so it can run on PCs, laptops, tablets and cellphones. This program can be used to teach students, fellows and the general public how and why lead positions and the different cell physiology in the heart affect the various features of the ECG.

17.
Artículo en Inglés | MEDLINE | ID: mdl-35754522

RESUMEN

Time series of spatially-extended two-dimensional recordings are the cornerstone of basic and clinical cardiac electrophysiology. The data source may be either multipolar catheters, multi-electrode arrays, optical mapping with the help of voltage and calcium-sensitive fluorescent dyes, or the output of simulation studies. The resulting data cubes (usually two spatial and one temporal dimension) are shared either as movie files or, after additional processing, various graphs and tables. However, such data products can only convey a limited view of the data. It will be beneficial if the data consumers can interactively process the data, explore different processing options and change its visualization. This paper presents the Unified Electrophysiology Mapping Framework (Unimapper) to facilitate the exchange of electrophysiology data. Its pedigree includes a Java-based optical mapping application. The core of Unimapper is a website and a collection of JavaScript utility functions for data import and visualization (including multi-channel visualization for simultaneous voltage/calcium mapping), basic image processing (e.g., smoothing), basic signal processing (e.g., signal detrending), and advanced processing (e.g., phase calculation using the Hilbert transform). Additionally, Unimapper can optionally use graphics processing units (GPUs) for computationally intensive operations. The Unimapper ecosystem also includes utility libraries for commonly used scientific programming languages (MATLAB, Python, and Julia) that allow the data producers to convert images and recorded signals into a standard format readable by Unimapper. Unimapper can act as a nexus to share electrophysiology data - whether recorded experimentally, clinically or generated by simulation - and enhance communication and collaboration among researchers.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35754523

RESUMEN

Understanding cardiac arrhythmic mechanisms and developing new strategies to control and terminate them using computer simulations requires realistic physiological cell models with anatomically accurate heart structures. Furthermore, numerical simulations must be fast enough to study and validate model and structure parameters. Here, we present an interactive parallel approach for solving detailed cell dynamics in high-resolution human heart structures with a local PC's GPU. In vitro human heart MRI scans were manually segmented to produce 3D structures with anatomically realistic electrophysiology. The Abubu.js library was used to create an interactive code to solve the OVVR human ventricular cell model and the FDA extension of the model in the human MRI heart structures, allowing the simulation of reentrant waves and investigation of their dynamics in real time. Interactive simulations of a physiological cell model in a detailed anatomical human heart reveals propagation of waves through the fine structures of the trabeculae and pectinate muscle that can perpetuate arrhythmias, thereby giving new insights into effects that may need to be considered when planning ablation and other defibrillation methods.

19.
Heart Rhythm O2 ; 2(4): 394-404, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34430945

RESUMEN

BACKGROUND: In March 2020, hydroxychloroquine (HCQ) alone or combined with azithromycin (AZM) was authorized as a treatment for COVID-19 in many countries. The therapy proved ineffective with long QT and deadly cardiac arrhythmia risks, illustrating challenges to determine the new safety profile of repurposed drugs. OBJECTIVE: To investigate proarrhythmic effects and mechanism of HCQ and AZM (combined and alone) with high doses of HCQ as in the COVID-19 clinical trials. METHODS: Proarrhythmic effects of HCQ and AZM are quantified using optical mapping with voltage-sensitive dyes in ex vivo Langendorff-perfused guinea pig (GP) hearts and with numerical simulations of a GP Luo-Rudy and a human O'Hara-Virag-Varro-Rudy models, for Epi, Endo, and M cells, in cell and tissue, incorporating the drug's effect on cell membrane ionic currents. RESULTS: Experimentally, HCQ alone and combined with AZM leads to long QT intervals by prolonging the action potential duration and increased spatial dispersion of action potential (AP) repolarization across the heart, leading to proarrhythmic discordant alternans. AZM alone had a lesser arrhythmic effect with less triangulation of the AP shape. Mathematical cardiac models fail to reproduce most of the arrhythmic effects observed experimentally. CONCLUSIONS: During public health crises, the risks and benefits of new and repurposed drugs could be better assessed with alternative experimental and computational approaches to identify proarrhythmic mechanisms. Optical mapping is an effective framework suitable to investigate the drug's adverse effects on cardiac cell membrane ionic channels at the cellular level and arrhythmia mechanisms at the tissue and whole-organ level.

20.
Comput Cardiol (2010) ; 20202020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34423055

RESUMEN

AIMS: Defibrillation shocks may cause AV node burnout, scar formation, and pain. In this study, we present a real-time feedback-based control of ventricular fibrillation (VF) with a series of low-energy shocks using ventricular electrical activity as the feedback input. METHODS: Isolated rabbit hearts were Langendorff perfused and stained with a fluorescent Vm dye. The ventricular activity was measured with a pair of photodiodes, and processed with a feedback controller to calculate defibrillation shock parameters in real-time. Shock timing was based on desynchronized activation of the left and right ventricles during VF, and the strength was proportional to the amplitude difference of the photodiode signals. Shocks were delivered with a custom-developed arbitrary waveform trans-conductance amplifier. RESULTS: Feedback based resynchronization therapy converts VT to MT before sinus rhythm is restored with a reduction of defibrillation energy, compared to a single biphasic shock. CONCLUSIONS: Feedback based resynchronization therapy is based on real-time sensing of ventricular activity, while a series of low-energy shocks are delivered, reducing the risk of associated side effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA