Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biol Proced Online ; 26(1): 13, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750435

RESUMEN

BACKGROUND: Pseudomyxoma peritonei (PMP) is a rare peritoneal mucinous carcinomatosis with largely unknown underlying molecular mechanisms. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is the only therapeutic option; however, despite its use, recurrence with a fatal outcome is common. The lack of molecular characterisation of PMP and other mucinous tumours is mainly due to the physicochemical properties of mucin. RESULTS: This manuscript describes the first protocol capable of breaking the mucin barrier and isolating proteins from mucinous tumours. Briefly, mucinous tumour samples were homogenised and subjected to liquid chromatography using two specific columns to reduce mainly glycoproteins, albumins and immunoglobulin G. The protein fractions were then subjected to mass spectrometry analysis and the proteomic profile obtained was analysed using various bioinformatic tools. Thus, we present here the first proteome analysed in PMP and identified a distinct mucin isoform profile in soft compared to hard mucin tumour tissues as well as key biological processes/pathways altered in mucinous tumours. Importantly, this protocol also allowed us to identify MUC13 as a potential tumour cell marker in PMP. CONCLUSIONS: In sum, our results demonstrate that this protein isolation protocol from mucin will have a high impact, allowing the oncology research community to more rapidly advance in the knowledge of PMP and other mucinous neoplasms, as well as develop new and effective therapeutic strategies.

2.
Brain ; 143(11): 3273-3293, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33141183

RESUMEN

Glioblastomas remain the deadliest brain tumour, with a dismal ∼12-16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness. Here, we identify for the first time a profound dysregulation in the expression of relevant spliceosome components and splicing factors (at mRNA and protein levels) in well characterized cohorts of human high-grade astrocytomas, mostly glioblastomas, compared to healthy brain control samples, being SRSF3, RBM22, PTBP1 and RBM3 able to perfectly discriminate between tumours and control samples, and between proneural-like or mesenchymal-like tumours versus control samples from different mouse models with gliomas. Results were confirmed in four additional and independent human cohorts. Silencing of SRSF3, RBM22, PTBP1 and RBM3 decreased aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere-formation, etc.) and induced apoptosis, especially SRSF3. Remarkably, SRSF3 was correlated with patient survival and relevant tumour markers, and its silencing in vivo drastically decreased tumour development and progression, likely through a molecular/cellular mechanism involving PDGFRB and associated oncogenic signalling pathways (PI3K-AKT/ERK), which may also involve the distinct alteration of alternative splicing events of specific transcription factors controlling PDGFRB (i.e. TP73). Altogether, our results demonstrate a drastic splicing machinery-associated molecular dysregulation in glioblastomas, which could potentially be considered as a source of novel diagnostic and prognostic biomarkers as well as therapeutic targets for glioblastomas. Remarkably, SRSF3 is directly associated with glioblastoma development, progression, aggressiveness and patient survival and represents a novel potential therapeutic target to tackle this devastating pathology.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Factores de Empalme Serina-Arginina/genética , Empalme Alternativo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/mortalidad , Movimiento Celular , Proliferación Celular , Silenciador del Gen , Glioblastoma/mortalidad , Humanos , Invasividad Neoplásica/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Neuroendocrinology ; 110(1-2): 70-82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31272096

RESUMEN

BACKGROUND: Pituitary neuroendocrine tumors (PitNETs) represent approximately 15% of all intracranial tumors and usually are associated with severe comorbidities. Unfortunately, a relevant number of patients do not respond to currently available pharmacological treatments, that is, somatostatin analogs (SSAs) or dopamine-agonists (DA). Thus, novel, chimeric somatostatin/dopamine compounds (dopastatins) that could improve medical treatment of PitNETs have been designed. OBJECTIVE: This study aims to determine the direct therapeutic effects of a new-generation dopastatin, BIM-065, on primary cell cultures from different PitNETs subtypes. METHODS: Thirty-one PitNET-derived cell cultures (9 corticotropinomas, 9 somatotropinomas, 11 nonfunctioning pituitary adenomas [NFPAs], and 2 prolactinomas), were treated with BIM-065, and key functional endpoints were assessed (cell viability, apoptosis, hormone secretion, expression levels of key genes, free cytosolic [Ca2+]i dynamics, etc.). AtT-20 cell line was used to evaluate signaling pathways in response to BIM-065. RESULTS: This chimeric compound decreased cell viability in all corticotropinomas and somatotropinomas tested, but not in NFPAs. BIM-065 reduced ACTH, GH, chromogranin-A and PRL secretion, and increased apoptosis in corticotropinomas, somatotropinomas, and NFPAs. These effects were possibly mediated through modulation of pivotal signaling cascades like [Ca2+]i kinetic and Akt- or ERK1/2-phosphorylation. CONCLUSIONS: Our results unveil a robust antitumoral effect in vitro of the novel chimeric compound BIM-065 on the main PitNET subtypes, inform on the mechanisms involved, and suggest that BIM-065 could be an efficacious therapeutic option to be considered in the treatment of PitNETs.


Asunto(s)
Dopaminérgicos/farmacología , Dopamina/análogos & derivados , Tumores Neuroendocrinos/tratamiento farmacológico , Neoplasias Hipofisarias/tratamiento farmacológico , Somatostatina/análogos & derivados , Somatostatina/farmacología , Dopamina/farmacología , Humanos , Somatostatina/análisis , Células Tumorales Cultivadas
4.
Neuroendocrinology ; 110(11-12): 1028-1041, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31940630

RESUMEN

INTRODUCTION: Pituitary neuroendocrine tumors (PitNETs), the most abundant of all intracranial tumors, entail severe comorbidities. First-line therapy is transsphenoidal surgery, but subsequent pharmacological therapy is often required. Unfortunately, many patients are/become unresponsive to available drugs (somatostatin analogues [SSAs]/dopamine agonists), underscoring the need for new therapies. Statins are well-known drugs commonly prescribed to treat hyperlipidemia/cardiovascular diseases, but can convey additional beneficial effects, including antitumor actions. The direct effects of statins on normal human pituitary or PitNETs are poorly known. Thus, we aimed to explore the direct effects of statins, especially simvastatin, on key functional parameters in normal and tumoral pituitary cells, and to evaluate the combined effects of simvastatin with metformin (MF) or SSAs. METHODS: Effects of statins in cell proliferation/viability, hormone secretion, and signaling pathways were evaluated in normal pituitary cells from a primate model (Papio anubis), tumor cells from corticotropinomas, somatotropinomas, nonfunctioning pituitary tumors, and PitNET cell-lines (AtT20/GH3-cells). RESULTS: All statins decreased AtT20-cell proliferation, simvastatin showing stronger effects. Indeed, simvastatin reduced cell viability and/or hormone secretion in all PitNETs subtypes and cell-lines, and ACTH/GH/PRL/FSH/LH secretion (but not expression), in primate cell cultures, by modulating MAPK/PI3K/mTOR pathways and expression of key receptors (GH-releasing hormone-receptor/ghrelin-R/Kiss1-R) regulating pituitary function. Addition of MF or SSAs did not enhance simvastatin antitumor effects. CONCLUSION: Our data reveal direct antitumor effects of simvastatin on PitNET-cells, paving the way to explore these compounds as a possible tool to treat PitNETs.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Tumores Neuroendocrinos/tratamiento farmacológico , Hipófisis/efectos de los fármacos , Neoplasias Hipofisarias/tratamiento farmacológico , Simvastatina/farmacología , Adulto , Anciano , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Hipoglucemiantes/farmacología , Masculino , Metformina/farmacología , Ratones , Persona de Mediana Edad , Papio anubis , Ratas , Somatostatina/farmacología , Adulto Joven
5.
J Cell Mol Med ; 23(5): 3088-3096, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30843342

RESUMEN

Acromegaly is a rare disease resulting from hypersecretion of growth hormone (GH) and insulin-like growth factor 1 (IGF1) typically caused by pituitary adenomas, which is associated with increased mortality and morbidity. Somatostatin analogues (SSAs) represent the primary medical therapy for acromegaly and are currently used as first-line treatment or as second-line therapy after unsuccessful pituitary surgery. However, a considerable proportion of patients do not adequately respond to SSAs treatment, and therefore, there is an urgent need to identify biomarkers predictors of response to SSAs. The aim of this study was to examine E-cadherin expression by immunohistochemistry in fifty-five GH-producing pituitary tumours and determine the potential association with response to SSAs as well as other clinical and histopathological features. Acromegaly patients with tumours expressing low E-cadherin levels exhibit a worse response to SSAs. E-cadherin levels are associated with GH-producing tumour histological subtypes. Our results indicate that the immunohistochemical detection of E-cadherin might be useful in categorizing acromegaly patients based on the response to SSAs.


Asunto(s)
Acromegalia/tratamiento farmacológico , Cadherinas/genética , Neoplasias Hipofisarias/tratamiento farmacológico , Somatostatina/administración & dosificación , Acromegalia/genética , Acromegalia/patología , Adulto , Biomarcadores/metabolismo , Biomarcadores Farmacológicos/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Persona de Mediana Edad , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/cirugía , Receptores de Somatostatina/genética , Somatostatina/análogos & derivados
7.
J Cell Mol Med ; 22(4): 2110-2116, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377493

RESUMEN

ß-arrestins seem to have a role in endocytosis and desensitization of somatostatin receptor subtype 2 (sst2) and could be associated with the responsiveness to somatostatin receptor ligands (SRL) in patients with acromegaly. To investigate the in vivo correlation between ß-arrestins 1 and 2 with sst2, sst5 and dopamine receptor subtype 2 (D2) expressions, and the association of ß-arrestins with response to first-generation SRL and invasiveness in somatotropinomas. ß-arrestins 1 and 2, sst2, sst5 and D2 mRNA expressions were evaluated by quantitative real-time RT-PCR on tumoral tissue of 96 patients. Moreover, sst2 and sst5 protein expressions were also evaluated in 40 somatotropinomas by immunohistochemistry. Response to SRL, defined as GH <1 µg/l and normal IGF-I levels, was assessed in 40 patients. The Knosp-Steiner criteria were used to define invasiveness. Median ß-arrestin 1, ß-arrestin 2, sst2, sst5 and D2 mRNA copy numbers were 478; 9375; 731; 156; and 3989, respectively. There was a positive correlation between ß-arrestins 1 and 2 (R = 0.444, P < 0.001). However, no correlation between ß-arrestins and sst2, sst5 (mRNA and protein levels) or D2 was found. No association was found between ß-arrestins expression and SRL responsiveness or tumour invasiveness. Although previous data suggest a putative correlation between ß-arrestins and sst2, our data clearly indicated that no association existed between ß-arrestins and sst2, sst5 or D2 expression, nor with response to SRL or tumour invasiveness. Therefore, further studies are required to clarify whether ß-arrestins have a role in the response to treatment with SRL in acromegaly.


Asunto(s)
Acromegalia/genética , beta-Arrestinas/genética , Adolescente , Adulto , Anciano , Femenino , Regulación de la Expresión Génica , Humanos , Ligandos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Somatostatina/metabolismo , Adulto Joven , beta-Arrestinas/metabolismo
8.
J Cell Mol Med ; 22(3): 1640-1649, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266696

RESUMEN

Acromegaly is a hormonal disorder resulting from excessive growth hormone (GH) secretion frequently produced by pituitary adenomas and consequent increase in insulin-like growth factor 1 (IGF-I). Elevated GH and IGF-I levels result in a wide range of somatic, cardiovascular, endocrine, metabolic and gastrointestinal morbidities. Somatostatin analogues (SSAs) form the basis of medical therapy for acromegaly and are currently used as first-line treatment or as second-line therapy in patients undergoing unsuccessful surgery. However, a considerable percentage of patients do not respond to SSAs treatment. Somatostatin receptors (SSTR1-5) and dopamine receptors (DRD1-5) subtypes play critical roles in the regulation of hormone secretion. These receptors are considered important pharmacological targets to inhibit hormone oversecretion. It has been proposed that decreased expression of SSTRs may be associated with poor response to SSAs. Here, we systematically examine SSTRs and DRDs expression in human somatotroph adenomas by quantitative PCR. We observed an association between the response to SSAs treatment and DRD4, DRD5, SSTR1 and SSTR2 expression. We also examined SSTR expression by immunohistochemistry and found that the immunohistochemical detection of SSTR2 in particular might be a good predictor of response to SSAs.


Asunto(s)
Adenoma/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Receptores Dopaminérgicos/genética , Receptores de Somatostatina/genética , Somatostatina/farmacología , Adenoma/tratamiento farmacológico , Adenoma/metabolismo , Adulto , Femenino , Expresión Génica/efectos de los fármacos , Adenoma Hipofisario Secretor de Hormona del Crecimiento/tratamiento farmacológico , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Somatostatina/metabolismo , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Cell Physiol Biochem ; 49(4): 1444-1459, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30205369

RESUMEN

BACKGROUND/AIMS: Biguanides are anti-hyperglycaemic agents used to treat diabetes by acting primarily on the liver, inhibiting hepatic gluconeogenesis. However, biguanides may target other key metabolic tissues to exert beneficial actions. As the "master endocrine gland", the pituitary is a true homeostatic sensor that controls whole body homeostasis and metabolism by integrating central and peripheral signals. However, whether the pituitary is a primary site of biguanides action in normal adult humans/primates remains unknown. Therefore, we aimed to elucidate the direct effects of two biguanides (metformin/phenformin) on the expression and secretion of all anterior pituitary hormones in two non-human primate species (Papio anubis and Macaca fascicularis), and the molecular/signalling-mechanisms behind these actions. METHODS: Primary pituitary cell cultures from baboons and macaques were used to determine the direct impact of metformin/phenformin (alone and combined with primary regulators) on the functioning of all pituitary cell-types (i.e. expression/secretion/signaling-pathways, etc). RESULTS: Metformin/phenformin inhibited basal, but not GHRH/ghrelin-stimulated GH/ACTH/ FSH-secretion and GH/POMC-expression, without altering secretion or expression of other pituitary hormones (PRL/LH/TSH), FSH-expression or cell viability in both primate models. These biguanide actions are likely mediated through modulation of: 1) common (mTOR/PI3K/intracellular-Ca2+mobilization) and distinct (MAPK) signaling pathways; and 2) gene expression of key receptors regulating somatotrope/corticotrope/gonadotrope function (i.e. upregulation of SSTR2/SSTR5/INSR/IGF1R/LEPR). CONCLUSION: The pituitary gland is a primary target of biguanide actions wherein they modulate somatotrope/corticotrope/gonadotrope-function through multiple molecular/signaling pathways in non-human primate-models. This suggests that the well-known metabolic effects of biguanides might be, at least in part, influenced by their actions at the pituitary level.


Asunto(s)
Metformina/farmacología , Hipófisis/efectos de los fármacos , Hormona Adrenocorticotrópica/metabolismo , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Hormona Folículo Estimulante/metabolismo , Ghrelina/metabolismo , Macaca , Papio , Fenformina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Hipófisis/citología , Hipófisis/metabolismo , Receptores de Leptina/metabolismo , Receptores de Somatostatina/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tirotropina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
Microb Biotechnol ; 17(3): e14442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465728

RESUMEN

The human microbiome comprises an ample set of organisms that inhabit and interact within the human body, contributing both positively and negatively to our health. In recent years, several research groups have described the presence of microorganisms in organs or tissues traditionally considered as 'sterile' under healthy and pathological conditions. In this sense, microorganisms have been detected in several types of cancer, including those in 'sterile' organs. But how can the presence of microorganisms be detected? In most studies, 16S and internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequencing has led to the identification of prokaryotes and fungi. However, a major limitation of this technique is that it cannot distinguish between living and dead organisms. RNA-based methods have been proposed to overcome this limitation, as the shorter half-life of the RNA would identify only the transcriptionally active microorganisms, although perhaps not all the viable ones. In this sense, metaproteomic techniques or the search for molecular metabolic signatures could be interesting alternatives for the identification of living microorganisms. In summary, new technological advances are challenging the notion of 'sterile' organs in our body. However, to date, evidence for a structured living microbiome in most of these organs is scarce or non-existent. The implementation of new technological approaches will be necessary to fully understand the importance of the microbiome in these organs, which could pave the way for the development of a wide range of new therapeutic strategies.


Asunto(s)
Cuerpo Humano , Infertilidad , Humanos , Análisis de Secuencia de ADN , ADN Ribosómico/genética , ARN/genética , ARN Ribosómico 16S/genética
11.
Metabolism ; 144: 155589, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182789

RESUMEN

BACKGROUND: Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function. APPROACH: To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps. RESULTS: Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved. CONCLUSION: These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression.


Asunto(s)
Hormona de Crecimiento Humana , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Lipogénesis/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Hormona del Crecimiento/metabolismo , Insulina/metabolismo , Glucólisis , Glucosa/metabolismo , Hormona de Crecimiento Humana/metabolismo
12.
Front Oncol ; 13: 1076500, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776312

RESUMEN

Introduction: Pseudomyxoma peritonei (PMP) is a rare malignant disease characterized by a massive multifocal accumulation of mucin within the peritoneal cavity. The current treatment option is based on complete cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy. However, the recurrence is frequent with subsequent progression and death. To date, most of the studies published in PMP are related to histological and genomic analyses. Thus, the need for further studies unveiling the underlying PMP molecular mechanisms is urgent. In this regard, hypoxia and oxidative stress have been extensively related to tumoral pathologies, although their contribution to PMP has not been elucidated. Methods: In this manuscript, we have evaluated, for the first time, the intratumoral real-time oxygen microtension (pO2mt) in the tumor (soft and hard mucin) and surrounding healthy tissue from five PMP patients during surgery. In addition, we measured hypoxia (Hypoxia Inducible Factor-1a; HIF-1α) and oxidative stress (catalase; CAT) markers in soft and hard mucin from the same five PMP patient samples and in five control samples. Results: The results showed low intratumoral oxygen levels, which were associated with increased HIF-1α protein levels, suggesting the presence of a hypoxic environment in these tumors. We also found a significant reduction in CAT activity levels in soft and hard mucin compared with healthy tissue samples. Discussion: In conclusion, our study provides the first evidence of low intratumoral oxygen levels in PMP patients associated with hypoxia and oxidative stress markers. However, further investigation is required to understand the potential role of oxidative stress in PMP in order to find new therapeutic strategies.

13.
Exp Hematol Oncol ; 12(1): 102, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066554

RESUMEN

Pseudomyxoma peritonei (PMP) is a rare disease characterized by a massive accumulation of mucus in the peritoneal cavity. The only effective treatment is aggressive surgery, aimed at removing all visible tumors. However, a high percentage of patients relapse, with subsequent progression and death. Recently, there has been an increase in therapies that target mutated oncogenic proteins. In this sense, KRAS has been reported to be highly mutated in PMP, with KRASG12D being the most common subtype. Here, we tested the efficacy of a small-molecule KRASG12D inhibitor, MRTX1133, in a high-grade PMP xenograft mouse model carrying a KRASG12D mutation. The results obtained in this work showed a profound inhibition of tumor growth, which was associated with a reduction in cell proliferation, an increase in apoptosis, and a reduction in the MAPK and PI3K/AKT/mTOR signaling pathways. In conclusion, these results demonstrate the high potency and efficacy of MRTX1133 in KRASG12D-PMP tumors and provide a rationale for clinical trials.

14.
Mol Oncol ; 16(3): 764-779, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601790

RESUMEN

Somatostatin receptor subtype 5 (SST5 ) is an emerging biomarker and actionable target in pituitary (PitNETs) and pancreatic (PanNETs) neuroendocrine tumors. Transcriptional and epigenetic regulation of SSTR5 gene expression and mRNA biogenesis is poorly understood. Recently, an overlapping natural antisense transcript, SSTR5-AS1, potentially regulating SSTR5 expression, was identified. We aimed to elucidate whether epigenetic processes contribute to the regulation of SSTR5 expression in PitNETs (somatotropinomas) and PanNETs. We analyzed the SSTR5/SSTR5-AS1 human locus in silico to identify CpG islands. SSTR5 and SSTR5-AS1 expression was assessed by quantitative real-time PCR (qPCR) in 27 somatotropinomas, 11 normal pituitaries (NPs), and 15 PanNETs/paired adjacent (control) samples. We evaluated methylation grade in four CpG islands in the SSTR5/SSTR5-AS1 genes. Results revealed that SSTR5 and SSTR5-AS1 were directly correlated in NP, somatotropinoma, and PanNET samples. Interestingly, selected CpG islands were differentially methylated in somatotropinomas compared with NPs. In PanNETs cell lines, SSTR5-AS1 silencing downregulated SSTR5 expression, altered aggressiveness features, and influenced pasireotide response. These results provide evidence that SSTR5 expression in PitNETs and PanNETs can be epigenetically regulated by the SSTR5-AS1 antisense transcript and, indirectly, by DNA methylation, which may thereby impact tumor behavior and treatment response.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Hipofisarias , Receptores de Somatostatina , Metilación de ADN , Epigénesis Genética , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo
15.
J Clin Endocrinol Metab ; 107(7): e2938-e2951, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35312002

RESUMEN

CONTEXT: Adrenocorticotropin (ACTH)-secreting pituitary tumors (ACTHomas) are associated with severe comorbidities and increased mortality. Current treatments mainly focus on remission and prevention of persistent disease and recurrence. However, there are still no useful biomarkers to accurately predict the clinical outcome after surgery, long-term remission, or disease relapse. OBJECTIVES: This work aimed to identify clinical, biochemical, and molecular markers for predicting long-term clinical outcome and remission in ACTHomas. METHODS: A retrospective multicenter study was performed with 60 ACTHomas patients diagnosed between 2004 and 2018 with at least 2 years' follow-up. Clinical/biochemical variables were evaluated yearly. Molecular expression profile of the somatostatin/ghrelin/dopamine regulatory systems components and of key pituitary factors and proliferation markers were evaluated in tumor samples after the first surgery. RESULTS: Clinical variables including tumor size, time until diagnosis/first surgery, serum prolactin, and postsurgery cortisol levels were associated with tumor remission and relapsed disease. The molecular markers analyzed were distinctly expressed in ACTHomas, with some components (ie, SSTR1, CRHR1, and MKI67) showing instructive associations with recurrence and/or remission. Notably, an integrative model including selected clinical variables (tumor size/postsurgery serum cortisol), and molecular markers (SSTR1/CRHR1) can accurately predict the clinical evolution and remission of patients with ACTHomas, generating a receiver operating characteristic curve with an area under the curve of 1 (P < .001). CONCLUSION: This study demonstrates that the combination of a set of clinical and molecular biomarkers in ACTHomas is able to accurately predict the clinical evolution and remission of patients. Consequently, the postsurgery molecular profile represents a valuable tool for clinical evaluation and follow-up of patients with ACTHomas.


Asunto(s)
Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Humanos , Hidrocortisona , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/diagnóstico , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/genética , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/cirugía , Hipófisis/patología , Neoplasias Hipofisarias/diagnóstico , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/cirugía , Recurrencia , Inducción de Remisión , Estudios Retrospectivos , Resultado del Tratamiento
16.
Cells ; 10(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34685512

RESUMEN

Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Hepatocitos/metabolismo , Metabolismo de los Lípidos/fisiología , Receptores de Somatotropina/metabolismo , Hormona del Crecimiento/metabolismo , Humanos , Hígado/metabolismo
17.
Arch Endocrinol Metab ; 65(5): 648-663, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34591404

RESUMEN

Acromegaly caused by ectopic growth hormone-releasing hormone (GHRH)-secreting tumor is exceedingly rare. We report a case of acromegaly secondary to GHRH secretion by an incidentally diagnosed pulmonary neuroendocrine tumor (NET) and review 47 similar cases in literature. A 22-year-old male patient presented with symptoms of pituitary apoplexy. Magnetic resonance imaging (MRI) showed apoplexy of a pituitary adenoma. Routinely prior to surgery, a chest radiography was performed which revealed a mass in the left lung. During investigation, the patient was diagnosed with metastatic GHRH-secreting pulmonary NET. In retrospect, it was noted that the patient had pituitary hyperplasia 20 months prior to the MRI which showed the presence of a pituitary adenoma. The histological findings confirmed somatotroph hyperplasia adjacent to somatotropinoma. This case suggests that GHRH secretion can be associated with pituitary hyperplasia, which may be followed by pituitary adenoma formation.


Asunto(s)
Acromegalia , Adenoma , Carcinoma Neuroendocrino , Neoplasias Hipofisarias , Adenoma/complicaciones , Adenoma/diagnóstico por imagen , Adulto , Hormona Liberadora de Hormona del Crecimiento , Humanos , Hiperplasia , Masculino , Adulto Joven
18.
J Endocrinol ; 248(1): 31-44, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112796

RESUMEN

A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.


Asunto(s)
Hígado Graso/etiología , Hormona del Crecimiento/fisiología , Hepatocitos/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Hígado/metabolismo , Animales , Femenino , Metabolismo de los Lípidos , Masculino , Ratones , Receptores de Somatotropina/fisiología , Caracteres Sexuales , Somatotrofos/metabolismo
19.
Clin Cancer Res ; 26(4): 957-969, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31624102

RESUMEN

PURPOSE: Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models. EXPERIMENTAL DESIGN: Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist. RESULTS: We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs. CONCLUSIONS: This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.


Asunto(s)
Tumores Neuroendocrinos/tratamiento farmacológico , Péptidos/farmacología , Neoplasias Hipofisarias/tratamiento farmacológico , Receptores de Somatostatina/agonistas , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Quinasas Janus/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Péptidos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Transducción de Señal , Células Tumorales Cultivadas , Adulto Joven
20.
Minerva Endocrinol ; 44(2): 109-128, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30650942

RESUMEN

Acromegaly is a chronic systemic disease mainly caused by a growth hormone (GH)-secreting pituitary neuroendocrine tumor (PitNETs), which is associated with many health complications and increased mortality when not adequately treated. Transsphenoidal surgery is considered the treatment of choice in GH-secreting PitNETs, but patients in whom surgery cannot be considered or with persistent disease after surgery require medical therapy. Treatment with available synthetic somatostatin analogues (SSAs) is considered the mainstay in the medical management of acromegaly which exert their beneficial effects through the binding to a family of G-protein coupled receptors encoded by 5 genes (SSTR1-5). However, although it has been demonstrated that the SST1-5 receptors are physically present in tumor cells, SSAs are in many cases ineffective (i.e. approximately 10-30% of patients with GH-secreting PitNET are unresponsive to SSAs), suggesting that other cellular/molecular determinants could be essential for the response to the pharmacological treatment in patients with GH-secreting PitNETs. Therefore, the scrutiny of these determinants might be used for the identification of subgroups of patients in whom an appropriate pharmacological treatment can be successfully employed (responders vs. non-responders). In this review, we will describe some of the existing, classical and novel, genetic and molecular determinants involved in the response of patients with GH-secreting PitNETs to the available therapeutic treatments, as well as new molecular/therapeutic approaches that could be potentially useful for the treatment of GH-secreting PitNETs.


Asunto(s)
Acromegalia/tratamiento farmacológico , Acromegalia/genética , Adenoma/tratamiento farmacológico , Adenoma/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/tratamiento farmacológico , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Humanos , Neoplasias Hipofisarias/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA