Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Haematologica ; 108(7): 1768-1781, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519325

RESUMEN

The BCL-2 inhibitor venetoclax has revolutionized the treatment of acute myeloid leukemia (AML) in patients not benefiting from intensive chemotherapy. Nevertheless, treatment failure remains a challenge, and predictive markers are needed, particularly for relapsed or refractory AML. Ex vivo drug sensitivity testing may correlate with outcomes, but its prospective predictive value remains unexplored. Here we report the results of the first stage of the prospective phase II VenEx trial evaluating the utility and predictiveness of venetoclax sensitivity testing using different cell culture conditions and cell viability assays in patients receiving venetoclax-azacitidine. Participants with de novo AML ineligible for intensive chemotherapy, relapsed or refractory AML, or secondary AML were included. The primary endpoint was the treatment response in participants showing ex vivo sensitivity and the key secondary endpoints were the correlation of sensitivity with responses and survival. Venetoclax sensitivity testing was successful in 38/39 participants. Experimental conditions significantly influenced the predictive accuracy. Blast-specific venetoclax sensitivity measured in conditioned medium most accurately correlated with treatment outcomes; 88% of sensitive participants achieved a treatment response. The median survival was significantly longer for participants who were ex vivo-sensitive to venetoclax (14.6 months for venetoclax-sensitive patients vs. 3.5 for venetoclax-insensitive patients, P<0.001). This analysis illustrates the feasibility of integrating drug-response profiling into clinical practice and demonstrates excellent predictivity. This trial is registered with ClinicalTrials.gov identifier: NCT04267081.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Estudios Prospectivos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
Duodecim ; 133(8): 782-90, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29240345

RESUMEN

Individualized medicine, based on a detailed mapping of the patient's disease mechanisms, is becoming an essential part of treatment for an increasing number of diseases. In the past few years, the possibility to determine the abnormal genome and transcriptome of diseased cells at a reasonable cost has been the major advance. The vast amount of data accumulated from one patient will set requirements for data extraction tools, in order to have the essential information affecting the treatment of the patient information quickly and reliably at the disposal of attending physicians. A computerized decision support system connected to the information systems of the hospital is an integral part of individualized treatment. Although the application of genomic and other profiling information is challenging, individualization of medication provides great promises more effective and safer treatment.


Asunto(s)
Genómica , Medicina de Precisión , Técnicas de Apoyo para la Decisión , Pruebas Genéticas , Genoma Humano , Humanos , Medición de Riesgo , Transcriptoma
3.
Nature ; 446(7132): 153-8, 2007 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-17344846

RESUMEN

Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias/genética , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Humanos , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética
4.
Cancer Discov ; 12(2): 388-401, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34789538

RESUMEN

We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Asunto(s)
Técnicas de Apoyo para la Decisión , Leucemia Mieloide Aguda/tratamiento farmacológico , Grupo de Atención al Paciente , Medicina de Precisión , Femenino , Finlandia , Humanos , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Inducción de Remisión , Análisis de Supervivencia
5.
Nucleic Acids Res ; 37(Database issue): D619-22, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18981052

RESUMEN

Reactome (http://www.reactome.org) is an expert-authored, peer-reviewed knowledgebase of human reactions and pathways that functions as a data mining resource and electronic textbook. Its current release includes 2975 human proteins, 2907 reactions and 4455 literature citations. A new entity-level pathway viewer and improved search and data mining tools facilitate searching and visualizing pathway data and the analysis of user-supplied high-throughput data sets. Reactome has increased its utility to the model organism communities with improved orthology prediction methods allowing pathway inference for 22 species and through collaborations to create manually curated Reactome pathway datasets for species including Arabidopsis, Oryza sativa (rice), Drosophila and Gallus gallus (chicken). Reactome's data content and software can all be freely used and redistributed under open source terms.


Asunto(s)
Bases de Datos de Proteínas , Fenómenos Fisiológicos , Proteínas/metabolismo , Animales , Humanos , Redes y Vías Metabólicas , Modelos Animales , Proteínas/genética , Proteínas/fisiología , Transducción de Señal , Programas Informáticos , Integración de Sistemas
6.
Cancer Discov ; 3(12): 1416-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24056683

RESUMEN

UNLABELLED: We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profiling and ex vivo drug sensitivity and resistance testing (DSRT) of patients' cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered five major taxonomic drug-response subtypes based on DSRT profiles, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3-ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses. After progression under DSRT-guided therapies, AML cells displayed significant clonal evolution and novel genomic changes potentially explaining resistance, whereas ex vivo DSRT data showed resistance to the clinically applied drugs and new vulnerabilities to previously ineffective drugs. SIGNIFICANCE: Here, we demonstrate an ISM strategy to optimize safe and effective personalized cancer therapies for individual patients as well as to understand and predict disease evolution and the next line of therapy. This approach could facilitate systematic drug repositioning of approved targeted drugs as well as help to prioritize and de-risk emerging drugs for clinical testing.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Medicina de Precisión/métodos , Antineoplásicos/farmacología , Progresión de la Enfermedad , Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
7.
Nat Biotechnol ; 28(9): 935-42, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20829833

RESUMEN

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


Asunto(s)
Biología Computacional/métodos , Biología Computacional/normas , Difusión de la Información , Redes y Vías Metabólicas , Transducción de Señal , Programas Informáticos , Bases de Datos como Asunto , Lenguajes de Programación
9.
Curr Protoc Bioinformatics ; Chapter 9: Unit 9.10, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18428688

RESUMEN

The Reactome project builds, maintains, and publishes a database of biological pathways. The information in the database is gathered from the experts in the field, peer reviewed, and edited by Reactome editorial staff and then published to the Reactome Web site, http://www.reactome.org (see UNIT ). Reactome software is open source and builds on top of other open-source or freely available software. Reactome data and code can be freely downloaded in its entirety and the Web site installed locally. This allows for more flexible interrogation of the data and also makes it possible to add one's own information to the database.


Asunto(s)
Bases de Datos de Proteínas , Internet , Mapeo de Interacción de Proteínas/métodos , Proteoma/química , Proteoma/metabolismo , Transducción de Señal/fisiología , Interfaz Usuario-Computador
10.
Genome Biol ; 8(3): R39, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17367534

RESUMEN

Reactome http://www.reactome.org, an online curated resource for human pathway data, provides infrastructure for computation across the biologic reaction network. We use Reactome to infer equivalent reactions in multiple nonhuman species, and present data on the reliability of these inferred reactions for the distantly related eukaryote Saccharomyces cerevisiae. Finally, we describe the use of Reactome both as a learning resource and as a computational tool to aid in the interpretation of microarrays and similar large-scale datasets.


Asunto(s)
Biología Computacional/métodos , Bases del Conocimiento , Redes y Vías Metabólicas , Biología de Sistemas , Animales , Bases de Datos como Asunto , Humanos , Internet , Análisis por Micromatrices , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA