Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(7): 1382-1397.e21, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36958331

RESUMEN

Suppressing sensory arousal is critical for sleep, with deeper sleep requiring stronger sensory suppression. The mechanisms that enable sleeping animals to largely ignore their surroundings are not well understood. We show that the responsiveness of sleeping flies and mice to mechanical vibrations is better suppressed when the diet is protein rich. In flies, we describe a signaling pathway through which information about ingested proteins is conveyed from the gut to the brain to help suppress arousability. Higher protein concentration in the gut leads to increased activity of enteroendocrine cells that release the peptide CCHa1. CCHa1 signals to a small group of dopamine neurons in the brain to modulate their activity; the dopaminergic activity regulates the behavioral responsiveness of animals to vibrations. The CCHa1 pathway and dietary proteins do not influence responsiveness to all sensory inputs, showing that during sleep, different information streams can be gated through independent mechanisms.


Asunto(s)
Nivel de Alerta , Sueño , Animales , Ratones , Nivel de Alerta/fisiología , Transporte Biológico , Encéfalo/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Sueño/fisiología , Intestinos/metabolismo
2.
Cell ; 181(6): 1307-1328.e15, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32502393

RESUMEN

The view that sleep is essential for survival is supported by the ubiquity of this behavior, the apparent existence of sleep-like states in the earliest animals, and the fact that severe sleep loss can be lethal. The cause of this lethality is unknown. Here we show, using flies and mice, that sleep deprivation leads to accumulation of reactive oxygen species (ROS) and consequent oxidative stress, specifically in the gut. ROS are not just correlates of sleep deprivation but drivers of death: their neutralization prevents oxidative stress and allows flies to have a normal lifespan with little to no sleep. The rescue can be achieved with oral antioxidant compounds or with gut-targeted transgenic expression of antioxidant enzymes. We conclude that death upon severe sleep restriction can be caused by oxidative stress, that the gut is central in this process, and that survival without sleep is possible when ROS accumulation is prevented. VIDEO ABSTRACT.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Privación de Sueño/metabolismo , Sueño/fisiología , Animales , Antioxidantes/metabolismo , Drosophila , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Estrés Oxidativo/fisiología
4.
PLoS Genet ; 13(1): e1006507, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28072817

RESUMEN

Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.


Asunto(s)
Envejecimiento/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Locomoción/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas CLOCK/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
PLoS Genet ; 8(7): e1002806, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792076

RESUMEN

TDP-43 is a multifunctional nucleic acid binding protein linked to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia. To learn more about the normal biological and abnormal pathological role of this protein, we turned to Caenorhabditis elegans and its orthologue TDP-1. We report that TDP-1 functions in the Insulin/IGF pathway to regulate longevity and the oxidative stress response downstream from the forkhead transcription factor DAF-16/FOXO3a. However, although tdp-1 mutants are stress-sensitive, chronic upregulation of tdp-1 expression is toxic and decreases lifespan. ALS-associated mutations in TDP-43 or the related RNA binding protein FUS activate the unfolded protein response and generate oxidative stress leading to the daf-16-dependent upregulation of tdp-1 expression with negative effects on neuronal function and lifespan. Consistently, deletion of endogenous tdp-1 rescues mutant TDP-43 and FUS proteotoxicity in C. elegans. These results suggest that chronic induction of wild-type TDP-1/TDP-43 by cellular stress may propagate neurodegeneration and decrease lifespan.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Longevidad/genética , Neuronas , Estrés Oxidativo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Regulación de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Longevidad/fisiología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/genética , Transducción de Señal , Somatomedinas/genética , Somatomedinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Neurobiol Dis ; 55: 64-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23567652

RESUMEN

C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/fisiopatología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cinamatos/farmacología , Cinamatos/uso terapéutico , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Humanos , Microinyecciones , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología , Fenazinas , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología , Tiourea/uso terapéutico , Factores de Tiempo , Tacto/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
8.
Exp Gerontol ; 85: 24-27, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27639775

RESUMEN

Endogenous circadian clocks with ~24-h periodicity are found in most organisms from cyanobacteria to humans. Daylight synchronizes these clocks to solar time. In humans, shift-work and jet lag perturb clock synchronization, and such perturbations, when repeated or chronic, are strongly suspected to be detrimental to healthspan. Here we investigated locomotor aging and longevity in Drosophila melanogaster with genetically or environmentally disrupted clocks. We compared two mutations in period (per, a gene essential for circadian rhythmicity in Drosophila), after introducing them in a common reference genetic background: the arrhythmic per01, and perT which displays robust short 16-h rhythms. Compared to the wild type, both per mutants showed reduced longevity and decreased startle-induced locomotion in aging flies, while spontaneous locomotor activity was not impaired. The per01 phenotypes were generally less severe than those of perT, suggesting that chronic jet lag is more detrimental to aging than arrhythmicity in Drosophila. Interestingly, the adjustment of environmental light-dark cycles to the endogenous rhythms of the perT mutant fully suppressed the acceleration in the age-related decline of startle-induced locomotion, while it accelerated this decline in wild-type flies. Overall, our results show that chronic jet lag accelerates a specific form of locomotor aging in Drosophila, and that this effect can be alleviated by environmental changes that ameliorate circadian rhythm synchronization.


Asunto(s)
Envejecimiento/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Síndrome Jet Lag/complicaciones , Locomoción/genética , Longevidad/genética , Proteínas Circadianas Period/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Enfermedad Crónica , Ritmo Circadiano , Drosophila melanogaster/genética , Femenino , Masculino , Mutación , Fotoperiodo
9.
Aging (Albany NY) ; 8(1): 50-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26764305

RESUMEN

Mitochondrial function is central to longevity and an imbalance in mitonuclear protein homeostasis activates a protective response called the mitochondrial unfolded protein response (UPRmt). Toxic compounds damaging mitochondria trigger the UPRmt, but at sublethal doses these insults extend lifespan in simple animals like C. elegans. Mitochondria are the main energy suppliers in eukaryotes, but it is not known if diet influences the UPRmt. High dietary glucose reduces lifespan in worms, and we show that high dietary glucose activates the UPRmt to protect against lifespan reduction. While lifelong exposure to glucose reduces lifespan, glucose exposure restricted to developing animals extends lifespan and requires the UPRmt. However, this lifespan extension is abolished by further mitochondrial stress in adult animals. We demonstrate that dietary conditions regulate mitochondrial homeostasis, where induction of the UPRmt during development extends lifespan, but prolonged activation into adulthood reduces lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Carbohidratos de la Dieta/metabolismo , Glucosa/metabolismo , Longevidad , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Respuesta de Proteína Desplegada , Factores de Edad , Animales , Antioxidantes/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Carbohidratos de la Dieta/toxicidad , Genotipo , Glucosa/toxicidad , Longevidad/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/genética , Estrés Oxidativo , Fenotipo , Pliegue de Proteína , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
10.
PLoS One ; 7(2): e31321, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363618

RESUMEN

Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening.


Asunto(s)
Envejecimiento/patología , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mutantes/metabolismo , Degeneración Nerviosa/patología , Parálisis/patología , Proteína FUS de Unión a ARN/metabolismo , Envejecimiento/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/química , Humanos , Longevidad , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas Mutantes/química , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Parálisis/complicaciones , Parálisis/metabolismo , Parálisis/fisiopatología , Fenotipo , Estructura Cuaternaria de Proteína , Proteína FUS de Unión a ARN/química , Solubilidad , Coloración y Etiquetado , Transmisión Sináptica , Transgenes/genética , Ácido gamma-Aminobutírico/metabolismo
11.
Aging Cell ; 11(5): 856-66, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22734670

RESUMEN

Nutrient availability influences an organism's life history with profound effects on metabolism and lifespan. The association between a healthy lifespan and metabolism is incompletely understood, but a central factor is glucose metabolism. Although glucose is an important cellular energy source, glucose restriction is associated with extended lifespan in simple animals and a reduced incidence of age-dependent pathologies in humans. We report here that glucose enrichment delays mutant polyglutamine, TDP-43, FUS, and amyloid-ß toxicity in Caenorhabditis elegans models of neurodegeneration by reducing protein misfolding. Dysregulated metabolism is common to neurodegeneration and we show that glucose enrichment is broadly protective against proteotoxicity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glucosa/administración & dosificación , Enfermedades Neurodegenerativas/metabolismo , Deficiencias en la Proteostasis/metabolismo , Factores de Edad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Restricción Calórica , Modelos Animales de Enfermedad , Glucosa/metabolismo , Longevidad , Enfermedades Neurodegenerativas/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pliegue de Proteína , Proteolisis , Deficiencias en la Proteostasis/inducido químicamente
12.
PLoS One ; 7(7): e42117, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848727

RESUMEN

The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.


Asunto(s)
Caenorhabditis elegans/citología , Proteínas de Unión al ADN/metabolismo , Azul de Metileno/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteína FUS de Unión a ARN/metabolismo , Pez Cebra/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Azul de Metileno/administración & dosificación , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Proteína FUS de Unión a ARN/genética , Factores de Tiempo , Pez Cebra/genética
13.
Cytokine Growth Factor Rev ; 20(4): 283-95, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19651532

RESUMEN

Immune recognition of virus-associated molecules by Toll-like receptors (TLRs) and/or RIG-I-like receptors (RLRs) triggers intracellular signaling cascades that converge on the activation of interferon regulatory factors - particularly IRF3 and IRF7, leading to the transcriptional induction of type 1 interferon genes. This review summarizes new data describing how these factors regulate the temporal and quantitative differences in the expression of the multigenic IFN-A family. The distinctive DNA-binding features of IRF3 and IRF7 affect the selectivity and affinity of these factors for IFN-A promoters; modification of the ratio of promoter-bound IRF3 and IRF7 during virus infection may influence both transcriptional activation and repression of IFN-A genes. This review also summarizes the structural differences between IFN-beta and different IFN-alpha subtypes, their interaction with their common receptor IFNAR, and their potency to elicit antiviral, antiproliferative and antitumoral responses. Taken together, this information enhances our understanding of the selective advantage of the multiplicity of IFN-alpha subtypes in the regulation of innate and adaptive immunity.


Asunto(s)
Perfilación de la Expresión Génica , Interferón-alfa/genética , Interferón-alfa/inmunología , Secuencia de Aminoácidos , Antivirales/inmunología , Antivirales/metabolismo , Secuencia de Bases , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA