Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Neuropsychopharmacol ; 18(7): pyv003, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25636892

RESUMEN

BACKGROUND: The term adult neurogenesis constitutes a series of developmental steps including the birth, survival, differentiation, maturation, and even death of newborn progenitor cells within neurogenic niches. Within the hippocampus progenitors reside in the neurogenic niche of the subgranular zone in the dentate gyrus subfield. At the different stages, designated type-I, type-IIa, type-IIb, type-III, and granule cell neurons, the cells express a series of markers enabling their identification and visualization. Lithium has been shown to increase hippocampal cell proliferation in the subgranular zone of the hippocampal dentate gyrus subfield of adult rodents and to stimulate the proliferation of hippocampal progenitor cells in vitro, but data regarding lithium's ability to increase neuronal differentiation and survival is equivocal. METHODS: To clarify the effect of lithium on adult hippocampal neurogenesis, we identified the effect of chronic lithium treatment on distinct stages of hippocampal progenitor development using adult Nestin-green fluorescent protein transgenic mice and immunofluorescent techniques. RESULTS: The present observations confirm that lithium targets the initial stages of progenitor development enhancing the turnover of quiescent neural progenitors/putative stem-cells, corroborating previous reports. However, the enhanced quiescent neural progenitor-turnover does not translate into an increased number of immature neurons. We also observed a steep decline in the number of type-III immature neurons with complex tertiary-dendrites, suggesting that lithium alters the morphological maturation of newborn neurons. CONCLUSIONS: Our results do not corroborate previous reports of lithium-induced enhanced numbers of newly generated neurons.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Hipocampo/citología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Proteína Doblecortina , Proteínas Fluorescentes Verdes/genética , Hipocampo/efectos de los fármacos , Compuestos de Litio , Masculino , Ratones , Ratones Transgénicos , Nestina/genética , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/clasificación , Neuronas/fisiología
2.
J Biosci ; 31(3): 423-34, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17006024

RESUMEN

Depression is the major psychiatric ailment of our times, afflicting approximately 20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.


Asunto(s)
Afecto , Factor Neurotrófico Derivado del Encéfalo/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Depresión/metabolismo , Animales , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Depresión/tratamiento farmacológico , Depresión/genética , Regulación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Mutación , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Ratas , Transducción de Señal
3.
J Neuroendocrinol ; 28(9)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27196416

RESUMEN

Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Privación Materna , Mitocondrias/metabolismo , Músculo Cuádriceps/metabolismo , Estrés Psicológico/sangre , Animales , Ansiedad , ADN Mitocondrial/metabolismo , Hígado/metabolismo , Masculino , Ratas Sprague-Dawley , Estrés Psicológico/genética
4.
Neuropharmacology ; 40(1): 48-56, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11077070

RESUMEN

The aim of the present study was to determine the influence of thyroid hormone, T3, on the regulation of hippocampal BDNF expression by 5-HT receptor agonists. Chronic T3 administration prior to treatment with the 5-HT(1A) agonist, 8-OH-DPAT, significantly decreased BDNF mRNA in the dentate gyrus region of the hippocampus. Administration of 8-OH-DPAT did not alter hippocampal BDNF mRNA expression in naive, euthyroid rats. Pretreatment with the 5-HT(1A) antagonist, WAY 100635, completely blocked the 8-OH-DPAT-induced down-regulation of BDNF mRNA in chronic T3-treated rats. Acute T3 administration prior to 8-OH-DPAT treatment led to a small, but significant, decrease in hippocampal dentate gyrus BDNF mRNA. Acute or chronic administration of T3 did not alter the decrease in hippocampal BDNF mRNA induced by the 5-HT(2A/2C) receptor agonist, DOI. The influence of 8-OH-DPAT and DOI on hippocampal BDNF mRNA was also unaltered in rats rendered hypothyroid by propylthiouracil administration. Chronic T3 treatment or hypothyroidism did not influence the basal expression of hippocampal BDNF mRNA. The affinity and density of 5-HT(1A) receptors, and the hippocampal expression of 5-HT(1A) mRNA were also not influenced by chronic T3 treatment. The results of this study clearly demonstrate a powerful interaction between thyroid hormone and the 5-HT(1A) receptor in the regulation of hippocampal BDNF expression. Crosstalk between signal transduction cascades influenced by T3 and 5-HT(1A) receptors may mediate the synergistic effects of these systems on hippocampal BDNF expression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Hipocampo/metabolismo , ARN Mensajero/biosíntesis , Receptores de Serotonina/efectos de los fármacos , Hormonas Tiroideas/farmacología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Antitiroideos/farmacología , Autorradiografía , Hipocampo/efectos de los fármacos , Hibridación in Situ , Masculino , Propiltiouracilo/farmacología , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A , Receptores de Serotonina 5-HT1 , Agonistas de Receptores de Serotonina/farmacología , Triyodotironina/sangre , Triyodotironina/farmacología
5.
Neuroscience ; 89(1): 157-66, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10051225

RESUMEN

Stress, which can precipitate and exacerbate depression, causes atrophy and in severe cases death of hippocampal neurons. Atrophy of the hippocampus has also been observed in patients suffering from recurrent major depression. The present study examines the influence of electroconvulsive seizures, one of the most effective treatments for depression, on the morphology and survival of hippocampal neurons. The results demonstrate that chronic administration of electroconvulsive seizures induces sprouting of the granule cell mossy fiber pathway in the hippocampus. This sprouting is dependent on repeated administration of electroconvulsive seizures, reaches a maximum 12 days after the last treatment and is long lasting (i.e. up to six months). Electroconvulsive seizure-induced sprouting occurs in the absence of neuronal loss, indicating that sprouting is not a compensatory response to cell death. This is different from the sprouting induced by kindling or excitotoxin treatment, which induce cell death along with recurrent seizures. Electroconvulsive seizure-induced sprouting is significantly diminished in brain-derived neurotrophic factor heterozygote knockout mice, indicating that this neurotrophic factor contributes to mossy fiber sprouting. However, infusion of brain-derived neurotrophic factor into the hippocampus does not induce sprouting of the mossy fiber pathway. The results demonstrate that chronic administration of electroconvulsive seizures induces mossy fiber sprouting and suggest that increased expression of brain-derived neurotrophic factor is necessary, but not sufficient for the induction of this sprouting. Although the functional consequences remain unclear, sprouting of the mossy fiber pathway would appear to oppose the actions of stress and could thereby contribute to the therapeutic actions of electroconvulsive seizure therapy.


Asunto(s)
Epilepsia/fisiopatología , Fibras Musgosas del Hipocampo/fisiología , Estrés Fisiológico/fisiopatología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Supervivencia Celular/fisiología , Electrochoque , Expresión Génica/fisiología , Hibridación in Situ , Masculino , Ratones , Ratones Mutantes , Fibras Musgosas del Hipocampo/química , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley
6.
Neurosci Lett ; 262(1): 1-4, 1999 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-10076858

RESUMEN

Immobilization stress decreases the expression of BDNF mRNA in the rat hippocampus, and this effect could contribute to the atrophy of hippocampal neurons. This study examines the influence of selective 5-HT, as well as norepinephrine, receptor antagonists on the stress-induced down-regulation of BDNF mRNA. Pretreatment with a selective 5-HT2A receptor antagonist, MDL100,907, significantly blocked the influence of stress on expression of BDNF mRNA. In contrast, pretreatment with either a selective 5-HT2C or 5-HT1A receptor antagonist did not influence the stress-induced decrease in levels of BDNF mRNA. The stress-induced decrease was also not influenced by pretreatment with antagonists of beta(1/2)- or alpha1-adrenergic, or CRF-R1 receptors. The results demonstrate that 5-HT2A receptors mediate, at least in part, the stress-induced down-regulation of BDNF expression in the rat hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Regulación hacia Abajo/fisiología , Hipocampo/metabolismo , Receptores de Serotonina/fisiología , Estrés Fisiológico/metabolismo , Animales , Masculino , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A , Receptores de Hormona Liberadora de Corticotropina/fisiología
7.
Neuroscience ; 239: 196-213, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-22967840

RESUMEN

Glucocorticoids serve as key stress response hormones that facilitate stress coping. However, sustained glucocorticoid exposure is associated with adverse consequences on the brain, in particular within the hippocampus. Chronic glucocorticoid exposure evokes neuronal cell damage and dendritic atrophy, reduces hippocampal neurogenesis and impairs synaptic plasticity. Glucocorticoids also alter expression and signaling of the neurotrophin, brain-derived neurotrophic factor (BDNF). Since BDNF is known to promote neuroplasticity, enhance cell survival, increase hippocampal neurogenesis and cellular excitability, it has been hypothesized that specific adverse effects of glucocorticoids may be mediated by attenuating BDNF expression and signaling. The purpose of this review is to summarize the current state of literature examining the influence of glucocorticoids on BDNF, and to address whether specific effects of glucocorticoids arise through perturbation of BDNF signaling. We integrate evidence of glucocorticoid regulation of BDNF at multiple levels, spanning from the well-documented glucocorticoid-induced changes in BDNF mRNA to studies examining alterations in BDNF receptor-mediated signaling. Further, we delineate potential lines of future investigation to address hitherto unexplored aspects of the influence of glucocorticoids on BDNF. Finally, we discuss the current understanding of the contribution of BDNF to the modulation of structural and functional plasticity by glucocorticoids, in particular in the context of the hippocampus. Understanding the mechanistic crosstalk between glucocorticoids and BDNF holds promise for the identification of potential therapeutic targets for disorders associated with the dysfunction of stress hormone pathways.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucocorticoides/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Humanos , Transducción de Señal/fisiología
8.
J Neuroendocrinol ; 24(9): 1259-71, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22497336

RESUMEN

Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Factores de Transcripción/biosíntesis , Triyodotironina/fisiología , Animales , Recuento de Células/métodos , Recuento de Células/estadística & datos numéricos , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Doblecortina , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Hipertiroidismo/sangre , Hipertiroidismo/inducido químicamente , Hipertiroidismo/fisiopatología , Hipotiroidismo/inducido químicamente , Hipotiroidismo/fisiopatología , Masculino , Metimazol , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Imagen Molecular/métodos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Tirotropina/metabolismo , Tiroxina/metabolismo , Triyodotironina/farmacología , Regulación hacia Arriba
12.
CNS Neurol Disord Drug Targets ; 6(5): 358-74, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18045164

RESUMEN

The evidence that new neuron addition takes place in the mammalian brain throughout adult life has dramatically altered our perspective of the potential for plasticity in the adult CNS. Although several recent reports suggest a latent neurogenic capacity in multiple brain regions, the two major neurogenic niches that retain the ability to generate substantial numbers of new neurons in adult life are the subventricular zone (SVZ) lining the lateral ventricles and the subgranular zone (SGZ) in the hippocampal formation. The discovery of adult neurogenesis has also unveiled a novel therapeutic target for the repair of damaged neuronal circuits. In this regard, understanding the endogenous mechanisms that regulate adult neurogenesis holds promise both for a deeper understanding of this form of structural plasticity, as well as the identification of pathways that can serve as therapeutic targets to manipulate adult neurogenesis. The purpose of the present review is to discuss the regulation of adult neurogenesis by neurotransmitters and to highlight the relevance of these endogenous regulators as targets to modulate adult neurogenesis in a clinical context.


Asunto(s)
Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/crecimiento & desarrollo , Neurotransmisores/fisiología , Adulto , Animales , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Humanos
13.
Br Med Bull ; 57: 61-79, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11719924

RESUMEN

An emerging hypothesis suggests that the pathogenesis and treatment of depression is likely to involve a plasticity of neuronal pathways. The inability of neuronal systems to exhibit appropriate, adaptive plasticity could contribute to the pathogenesis of depression. Antidepressant treatments may exert their therapeutic effects by stimulating appropriate adaptive changes in neuronal systems. Recent studies have demonstrated that chronic antidepressant administration up-regulates the cAMP signal transduction cascade resulting in an increased expression and function of the transcription factor CREB. Enhanced CREB expression leads to an up-regulation of specific target genes, including the neurotrophin BDNF. Chronic antidepressant treatments enhance BDNF expression within hippocampal and cortical neurons and can prevent the stress-induced decrease in BDNF expression. Stress has been shown to: (i) induce neuronal atrophy/death; and (ii) decrease neurogenesis of hippocampal neurons. Clinical studies indicate significant hippocampal damage in cases of major, recurrent depression. It is possible that antidepressant treatments through enhanced expression of growth and survival promoting factors like BDNF may prevent or reverse the atrophy and damage of hippocampal neurons. Indeed, studies have indicated that chronic antidepressant treatments enhance hippocampal neurogenesis, promote neuronal sprouting and prevent atrophy. The molecular mechanisms underlying the effects of antidepressant treatments including adaptations in the cAMP transduction cascade, CREB and BDNF gene expression, and structural neuronal plasticity are discussed.


Asunto(s)
Depresión/fisiopatología , Plasticidad Neuronal , Neurotransmisores/genética , Adaptación Psicológica , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/genética , Enfermedad Crónica , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Depresión/tratamiento farmacológico , Expresión Génica , Humanos , Transducción de Señal/efectos de los fármacos
14.
J ECT ; 14(3): 181-93, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9773357

RESUMEN

Recent studies have begun to examine the influence of electroconvulsive shock (ECS) on the expression of growth factors in brain, as well as alterations in the function and structure of certain populations of neurons. These studies demonstrate that long-term ECS increases the expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, in limbic brain regions. BDNF, a member of the nerve growth-factor family, has been shown to increase the synaptic strength, survival, and growth of adult neurons. Studies in vivo and in cultured cells indicate that the induction of BDNF and TrkB is mediated by the cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), a transcription factor that is activated by cAMP and Ca2+ intracellular pathways. Chronic ECS is also reported to induce sprouting of hippocampal neurons, and studies in BDNF mutant mice indicated that this sprouting is partially dependent on upregulation of BDNF. Increased expression of BDNF and sprouting could also contribute to the altered electrophysiologic properties of hippocampal neurons. These effects of chronic ECS are discussed with respect to recent studies demonstrating that the pathophysiology of stress and depression involves atrophy or death of hippocampal neurons. This work has led to the hypothesis that ECS and antidepressant drugs, via regulation of neurotrophic factors, reverse the atrophy of stress-vulnerable neurons or protect these neurons from further damage.


Asunto(s)
Química Encefálica/fisiología , Encéfalo/fisiopatología , Terapia Electroconvulsiva , Animales , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Humanos , Ratones , Neuronas/patología , Neuronas/fisiología
15.
Synapse ; 35(2): 137-43, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10611639

RESUMEN

Chronic administration of electroconvulsive seizures (ECS), one of the most effective treatments for depression, induces sprouting of the mossy fibers in the hippocampus. This sprouting requires chronic ECS administration and appears to occur in the absence of hilar neuronal loss. Dynamic regulation of cytoarchitecture plays a vital role in such profound alterations of neuronal morphology. In particular, alterations in the neurofilament protein subunits have been implicated in neurite sprouting, neuronal regeneration, and growth. The present study was carried out to determine the influence of chronic ECS administration on the neurofilament subunits and other molecular markers of neuronal plasticity. Chronic ECS administration decreases the level of phosphorylated heavy neurofilament subunit (NF-H). In addition, the total level of the light neurofilament subunit (NF-L) but not the medium neurofilament subunit (NF-M) is decreased following chronic ECS treatment. Other cytoskeletal proteins, including actin, microtubule-associated protein (MAP-2), and tau, are not influenced by chronic ECS administration. Expression of the growth-associated protein (F1/GAP-43) also remains unchanged following chronic ECS treatment. The changes observed in neurofilaments may be part of the cytoskeletal remodeling that contributes to the mossy fiber sprouting induced by chronic ECS treatment.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Hipocampo/metabolismo , Proteínas de Neurofilamentos/metabolismo , Convulsiones/fisiopatología , Actinas/metabolismo , Animales , Electrochoque , Proteína GAP-43/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas tau/metabolismo
16.
J Neurochem ; 66(1): 429-32, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8522985

RESUMEN

Rapid expression of ICER (inducible cyclic AMP early repressor), an inducible member of the CREM (cyclic AMP response element modulator) family of transcription factors, has been reported in neuroendocrine tissues and cell lines, but not in brain. In the present study, we demonstrate that acute electro-convulsive seizure (ECS) increases the expression of ICER in several rat brain regions. RNase protection analysis demonstrated that 1-2 h after administration of ECS, levels of mRNA for ICER and a splice variant, ICER gamma, were significantly increased in hippocampus, frontal cortex, and cerebellum. It is surprising that ECS also increased levels of mRNA for several CREM isoforms that previous studies have reported were not rapidly inducible. In situ hybridization analysis confirmed these findings and demonstrated that ECS induction of ICER was most obvious in the dentate gyrus granule cell layer of hippocampus and deep layers of cerebral cortex. Induction of ICER and CREM was accompanied by increased expression of two small CRE-binding complexes. Gel supershift analysis with CREM/ICER antisera confirmed that the inducible CRE-binding complexes contain CREM/ICER. Induction of CREM and ICER may contribute to negative feedback regulation of gene transcription that is increased by acute seizure and activation of CREB (cyclic AMP response element-binding protein.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Electrochoque/efectos adversos , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Represoras , Convulsiones/metabolismo , Animales , AMP Cíclico/fisiología , Modulador del Elemento de Respuesta al AMP Cíclico , Proteínas de Unión al ADN/genética , Masculino , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley , Convulsiones/etiología , Convulsiones/genética
17.
J Neurosci ; 17(8): 2785-95, 1997 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-9092600

RESUMEN

The influence of 5-HT receptor agonists on the expression of BDNF in brain was determined. Administration of a hallucinogenic 5-HT2A /2C receptor agonist, but not a 5-HT1A receptor agonist, resulted in a significant but differential regulation of BDNF mRNA levels in hippocampus and neocortex. In the hippocampus, the 5-HT2A /2C receptor agonist significantly decreased BDNF mRNA expression in the dentate gyrus granule cell layer but did not influence expression of the neurotrophin in the CA subfields. In parietal cortex and other neocortical areas, but not piriform cortex, the 5-HT2A /2C receptor agonist dramatically increased the expression of BDNF mRNA. The effect of the 5-HT2A /2C receptor agonist on BDNF mRNA in both the hippocampus and the neocortex was blocked by pretreatment with a selective 5-HT2A, but not 5-HT2C, receptor antagonist. The expression of BDNF mRNA in the hippocampus is reported to be decreased by stress, raising the possibility that the 5-HT2A receptor mediates this effect. Pretreatment with ketanserin, a 5-HT2A /2C receptor antagonist, significantly blocked the stress-induced downregulation of BDNF mRNA in hippocampus, in support of this hypothesis. The results of this study raise the possibility that regulation of BDNF expression by hallucinogenic 5-HT2A receptor agonists leads to adaptations of synaptic strength in the hippocampus and the neocortex that may mediate some of the acute and long-term behavioral effects of these agents.


Asunto(s)
Anfetaminas/farmacología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de Serotonina/fisiología , Agonistas de Receptores de Serotonina/farmacología , Transcripción Genética , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Adrenalectomía , Análisis de Varianza , Animales , Corteza Cerebral/efectos de los fármacos , Giro Dentado/metabolismo , Alucinógenos/farmacología , Hipocampo/efectos de los fármacos , Masculino , Modelos Neurológicos , Especificidad de Órganos , Lóbulo Parietal/metabolismo , Células Piramidales/metabolismo , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A , Transcripción Genética/efectos de los fármacos
18.
Mol Pharmacol ; 48(2): 206-11, 1995 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7651353

RESUMEN

Incubation of rat C6 glioma cells with beta-adrenergic receptor (beta AR) agonist or with agents that increase cAMP levels results in down-regulation of the beta 2AR, as measured by the loss of radioligand binding sites. In the present study, the role of beta 2AR mRNA expression and stability in the down-regulation of beta 2AR sites in C6 cells was examined. Isoproterenol or forskolin treatment decreased beta 2AR mRNA levels in a time-dependent manner, with maximal loss of approximately 50% being observed after 2 hr. Pretreatment of the cells with a potent protein synthesis inhibitor, Pseudomonas exotoxin A, completely blocked isoproterenol- and forskolin-mediated down-regulation of beta 2AR mRNA. Exposure to agonist did not significantly influence the half-life of beta 2AR mRNA, which was approximately 60 min. In contrast, isoproterenol treatment for 2 hr significantly decreased the rate of beta 2AR gene transcription, as determined by nuclear run-on analysis. Based on these results, we propose that agonist regulation of beta 2AR mRNA in C6 cells is mediated by activation of the cAMP system and occurs at the level of beta 2AR gene transcription, not mRNA stability. In addition, the observed requirement for protein synthesis indicates that down-regulation of beta 2AR mRNA may be mediated by expression of a repressor of beta 2AR gene transcription.


Asunto(s)
ADP Ribosa Transferasas , Toxinas Bacterianas , Colforsina/farmacología , Isoproterenol/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Receptores Adrenérgicos beta 2/genética , Transcripción Genética/efectos de los fármacos , Factores de Virulencia , Agonistas de Receptores Adrenérgicos beta 2 , Animales , Secuencia de Bases , Cartilla de ADN , Regulación hacia Abajo , Exotoxinas/farmacología , Datos de Secuencia Molecular , Pseudomonas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Células Tumorales Cultivadas , Exotoxina A de Pseudomonas aeruginosa
19.
J Neurosci ; 18(17): 6952-62, 1998 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9712664

RESUMEN

The role of Fos-like transcription factors in neuronal and behavioral plasticity has remained elusive. Here we demonstrate that a Fos family member protein plays physiological roles in the neuronal, electrophysiological, and behavioral plasticity associated with repeated seizures. Repeated electroconvulsive seizures (ECS) induced isoforms of DeltaFosB in frontal cortex, an effect that was associated with increased levels of the NMDA receptor 1 (NMDAR1) glutamate receptor subunit. Induction of DeltaFosB and the upregulation of NMDAR1 occurred within the same neurons in superficial layers of neocortex. Activator protein-1 (AP-1) complexes composed of DeltaFosB were bound to a consensus AP-1 site in the 5'-promoter region of the NMDAR1 gene. The upregulation of NMDAR1 was absent in mice with a targeted disruption of the fosB gene. In addition, repeated ECS treatment caused progressively shorter motor seizures (tolerance) in both rats and wild-type mice, as well as reduced NMDA-induced inward currents in pyramidal neurons from superficial layers of the neocortex of wild-type mice. These behavioral and electrophysiological effects were also significantly attenuated in fosB mutant mice. These findings identify fosB gene products as transcription factors critical for molecular, electrophysiological, and behavioral adaptations to motor seizures.


Asunto(s)
Adaptación Psicológica , Genes fos , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Convulsiones/genética , Factor de Transcripción AP-1/genética , Animales , Enfermedad Crónica , Electrochoque , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Neocórtex/citología , Neocórtex/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología
20.
J Pharmacol Exp Ther ; 276(1): 306-15, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8558448

RESUMEN

Previous work has shown that chronic opiate administration regulates protein components of the cAMP signaling pathway, specifically in the nucleus accumbens (NAc), a brain region implicated in the reinforcing properties of opiates, and that such adaptations may contribute to changes in reinforcement mechanisms that characterize opiate addiction. In the present study, we examined a possible role for the transcription factor cAMP response element-binding protein (CREB) in mediating these long-term effects of opiates in the NAc. Chronic, but not acute, morphine administration was found to decrease levels of CREB immunoreactivity in the NAc, an effect not seen in other brain regions studied. The functional significance of this CREB down-regulation was then investigated by the use of an anti-sense oligonucleotide strategy that produces a specific and sustained decrease in CREB levels in the NAc, without detectable toxicity. It was found that the antisense oligonucleotide-induced reduction in CREB levels mimicked the effect of morphine on certain, but not all, cAMP pathway proteins in this brain region, whereas a large number of other signal transduction proteins tested were unaffected by this treatment. Our results support a role for CREB in autoregulation of the cAMP pathway in the nervous system, as well as in mediating some of the effects of morphine on this signaling pathway in the NAc.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Morfina/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Animales , Secuencia de Bases , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Masculino , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Señales de Clasificación de Proteína/metabolismo , Señales de Clasificación de Proteína/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA