Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nature ; 613(7945): 751-758, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631608

RESUMEN

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Asunto(s)
Anticodón , Codón de Terminación , Células Eucariotas , Código Genético , Mutación , Factores de Terminación de Péptidos , ARN de Transferencia , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Cilióforos/genética , Codón de Terminación/genética , Código Genético/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Triptófano/genética , Saccharomyces cerevisiae/genética , ARN de Transferencia de Ácido Glutámico/genética , Trypanosoma brucei brucei/genética
2.
Mol Cell ; 79(4): 546-560.e7, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32589964

RESUMEN

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Regiones no Traducidas 5' , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Codón Iniciador , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Factores de Iniciación de Péptidos/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 52(8): 4604-4626, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38348908

RESUMEN

Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , ARN Bacteriano , Factor sigma , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN no Traducido , Factor sigma/metabolismo , Factor sigma/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Transcripción Genética
4.
RNA ; 29(9): 1379-1387, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221013

RESUMEN

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.


Asunto(s)
Cisteína , Saccharomyces cerevisiae , Humanos , Codón de Terminación/genética , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Saccharomyces cerevisiae/genética , ARN de Transferencia de Cisteína/metabolismo , ARN de Transferencia de Triptófano/metabolismo , ARN de Transferencia de Tirosina , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Codón sin Sentido/genética , Biosíntesis de Proteínas
6.
Mol Cell ; 68(5): 885-900.e6, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220654

RESUMEN

The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 3 de Iniciación Eucariótica/metabolismo , Fibroblastos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/biosíntesis , Transcripción Genética , eIF-2 Quinasa/metabolismo , Animales , Reprogramación Celular , Factor 3 de Iniciación Eucariótica/genética , Fibroblastos/patología , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Fenotipo , Proteostasis , Interferencia de ARN , ARN Mensajero/genética , Transducción de Señal , Factores de Tiempo , Transfección , eIF-2 Quinasa/genética
8.
Nucleic Acids Res ; 49(15): 8743-8756, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34352092

RESUMEN

Translation reinitiation is a gene-specific translational control mechanism. It is characterized by the ability of short upstream ORFs to prevent full ribosomal recycling and allow the post-termination 40S subunit to resume traversing downstream for the next initiation event. It is well known that variable transcript-specific features of various uORFs and their prospective interactions with initiation factors lend them an unequivocal regulatory potential. Here, we investigated the proposed role of the major initiation scaffold protein eIF4G in reinitiation and its prospective interactions with uORF's cis-acting features in yeast. In analogy to the eIF3 complex, we found that eIF4G and eIF4A but not eIF4E (all constituting the eIF4F complex) are preferentially retained on ribosomes elongating and terminating on reinitiation-permissive uORFs. The loss of the eIF4G contact with eIF4A specifically increased this retention and, as a result, increased the efficiency of reinitiation on downstream initiation codons. Combining the eIF4A-binding mutation with that affecting the integrity of the eIF4G1-RNA2-binding domain eliminated this specificity and produced epistatic interaction with a mutation in one specific cis-acting feature. We conclude that similar to humans, eIF4G is retained on ribosomes elongating uORFs to control reinitiation also in yeast.


Asunto(s)
ARN Helicasas DEAD-box/genética , Factor 3 de Iniciación Eucariótica/genética , Factor 4G Eucariótico de Iniciación/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Codón Iniciador/genética , Factor 4E Eucariótico de Iniciación/genética , Humanos , Sistemas de Lectura Abierta/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética
9.
Nucleic Acids Res ; 49(9): 5202-5215, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34009360

RESUMEN

Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.


Asunto(s)
Codón de Terminación , Biosíntesis de Proteínas , ARN de Transferencia de Triptófano/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Línea Celular , Genes Reporteros , Humanos , Mutación , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas/genética , ARN Nuclear Pequeño/genética , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Tirosina/genética , Triptófano-ARNt Ligasa/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Tirosina-ARNt Ligasa/genética , Proteínas Virales/genética
10.
Nucleic Acids Res ; 48(4): 1969-1984, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31863585

RESUMEN

One of the key roles of the 12-subunit eukaryotic translation initiation factor 3 (eIF3) is to promote the formation of the 43S and 48S pre-initiation complexes (PICs). However, particular contributions of its individual subunits to these two critical initiation reactions remained obscure. Here, we adapted formaldehyde gradient cross-linking protocol to translation studies and investigated the efficiency of the 43S and 48S PIC assembly in knockdowns of individual subunits of human eIF3 known to produce various partial subcomplexes. We revealed that eIF3d constitutes an important intermolecular bridge between eIF3 and the 40S subunit as its elimination from the eIF3 holocomplex severely compromised the 43S PIC assembly. Similarly, subunits eIF3a, c and e were found to represent an important binding force driving eIF3 binding to the 40S subunit. In addition, we demonstrated that eIF3c, and eIF3k and l subunits alter the efficiency of mRNA recruitment to 43S PICs in an opposite manner. Whereas the eIF3c knockdown reduces it, downregulation of eIF3k or eIF3l increases mRNA recruitment, suggesting that the latter subunits possess a regulatory potential. Altogether this study provides new insights into the role of human eIF3 in the initial assembly steps of the translational machinery.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Proteínas Asociadas a Microtúbulos/genética , Ribosomas/genética , Reactivos de Enlaces Cruzados/farmacología , Formaldehído/farmacología , Humanos , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
11.
Nucleic Acids Res ; 47(12): 6339-6350, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31069379

RESUMEN

Stop codon readthrough-the decoding of a stop codon by a near-cognate tRNA-is employed by viruses to balance levels of enzymatic and structural proteins and by eukaryotic cells to enable isoform-specific protein synthesis in response to external stimuli. Owing to the prevalence of premature termination codons in human disease, readthrough has emerged as an attractive therapeutic target. A growing list of various features, for example the +4 nucleotide immediately following the stop codon, modulate readthrough levels, underscoring the need for systematic investigation of readthrough. Here, we identified and described a complete group of yeast tRNAs that induce readthrough in the stop-codon tetranucleotide manner when overexpressed, designated readthrough-inducing tRNAs (rti-tRNAs). These rti-tRNAs are the keystones of YARIS (yeast applied readthrough inducing system), a reporter-based assay enabling simultaneous detection of readthrough levels at all twelve stop-codon tetranucleotides and as a function of the complete set of rti-tRNAs. We demonstrate the utility of YARIS for systematic study of translation readthrough by employing it to interrogate the effects of natural rti-tRNA modifications, as well as various readthrough-inducing drugs (RTIDs). This analysis identified a variety of genetic interactions demonstrating the power of YARIS to characterize existing and identify novel RTIDs.


Asunto(s)
Codón de Terminación , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Aminoglicósidos/farmacología , Nucleótidos/química , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia de Glutamina , ARN de Transferencia de Tirosina , Saccharomyces cerevisiae/genética
12.
Nucleic Acids Res ; 47(21): 11326-11343, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31642471

RESUMEN

Ribosome was long considered as a critical yet passive player in protein synthesis. Only recently the role of its basic components, ribosomal RNAs and proteins, in translational control has begun to emerge. Here we examined function of the small ribosomal protein uS3/Rps3, earlier shown to interact with eukaryotic translation initiation factor eIF3, in termination. We identified two residues in consecutive helices occurring in the mRNA entry pore, whose mutations to the opposite charge either reduced (K108E) or increased (R116D) stop codon readthrough. Whereas the latter increased overall levels of eIF3-containing terminating ribosomes in heavy polysomes in vivo indicating slower termination rates, the former specifically reduced eIF3 amounts in termination complexes. Combining these two mutations with the readthrough-reducing mutations at the extreme C-terminus of the a/Tif32 subunit of eIF3 either suppressed (R116D) or exacerbated (K108E) the readthrough phenotypes, and partially corrected or exacerbated the defects in the composition of termination complexes. In addition, we found that K108 affects efficiency of termination in the termination context-specific manner by promoting incorporation of readthrough-inducing tRNAs. Together with the multiple binding sites that we identified between these two proteins, we suggest that Rps3 and eIF3 closely co-operate to control translation termination and stop codon readthrough.


Asunto(s)
Codón de Terminación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas Ribosómicas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Sitios de Unión/genética , Factor 3 de Iniciación Eucariótica/genética , Organismos Modificados Genéticamente , Terminación de la Cadena Péptídica Traduccional/genética , Unión Proteica , Biosíntesis de Proteínas/genética , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Nucleic Acids Res ; 47(15): 8282-8300, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291455

RESUMEN

eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factor 5 Eucariótico de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión/genética , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Plant Physiol ; 178(1): 258-282, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007911

RESUMEN

Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Polen/genética , Polen/metabolismo , Proteómica/métodos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
15.
Nucleic Acids Res ; 45(5): 2658-2674, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28119417

RESUMEN

Translation reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream ORFs to prevent recycling of the post-termination 40S subunit in order to resume scanning for reinitiation downstream. Its efficiency decreases with the increasing uORF length, or by the presence of secondary structures, suggesting that the time taken to translate a uORF is more critical than its length. This led to a hypothesis that some initiation factors needed for reinitiation are preserved on the 80S ribosome during early elongation. Here, using the GCN4 mRNA containing four short uORFs, we developed a novel in vivo RNA-protein Ni2+-pull down assay to demonstrate for the first time that one of these initiation factors is eIF3. eIF3 but not eIF2 preferentially associates with RNA segments encompassing two GCN4 reinitiation-permissive uORFs, uORF1 and uORF2, containing cis-acting 5΄ reinitiation-promoting elements (RPEs). We show that the preferred association of eIF3 with these uORFs is dependent on intact RPEs and the eIF3a/TIF32 subunit and sharply declines with the extended length of uORFs. Our data thus imply that eIF3 travels with early elongating ribosomes and that the RPEs interact with eIF3 in order to stabilize the mRNA-eIF3-40S post-termination complex to stimulate efficient reinitiation downstream.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Regulación de la Expresión Génica , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Regiones no Traducidas 5' , Codón de Terminación , Técnicas Genéticas , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
16.
Nucleic Acids Res ; 45(19): 10948-10968, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28981723

RESUMEN

Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream-in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3-40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3's impact on translational control in eukaryotic cells.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Animales , Factor 3 de Iniciación Eucariótica/genética , Humanos , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
RNA ; 22(3): 456-66, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26759455

RESUMEN

The molecular mechanism of stop codon recognition by the release factor eRF1 in complex with eRF3 has been described in great detail; however, our understanding of what determines the difference in termination efficiencies among various stop codon tetranucleotides and how near-cognate (nc) tRNAs recode stop codons during programmed readthrough in Saccharomyces cerevisiae is still poor. Here, we show that UGA-C as the only tetranucleotide of all four possible combinations dramatically exacerbated the readthrough phenotype of the stop codon recognition-deficient mutants in eRF1. Since the same is true also for UAA-C and UAG-C, we propose that the exceptionally high readthrough levels that all three stop codons display when followed by cytosine are partially caused by the compromised sampling ability of eRF1, which specifically senses cytosine at the +4 position. The difference in termination efficiencies among the remaining three UGA-N tetranucleotides is then given by their varying preferences for nc-tRNAs. In particular, UGA-A allows increased incorporation of Trp-tRNA whereas UGA-G and UGA-C favor Cys-tRNA. Our findings thus expand the repertoire of general decoding rules by showing that the +4 base determines the preferred selection of nc-tRNAs and, in the case of cytosine, it also genetically interacts with eRF1. Finally, using an example of the GCN4 translational control governed by four short uORFs, we also show how the evolution of this mechanism dealt with undesirable readthrough on those uORFs that serve as the key translation reinitiation promoting features of the GCN4 regulation, as both of these otherwise counteracting activities, readthrough versus reinitiation, are mediated by eIF3.


Asunto(s)
Oligonucleótidos/genética , Sistemas de Lectura Abierta , ARN de Transferencia/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Codón de Terminación , Citosina/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
RNA ; 22(7): 957-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27190231

RESUMEN

Nucleic acid sequence complementarity underlies many fundamental biological processes. Although first noticed a long time ago, sequence complementarity between mRNAs and ribosomal RNAs still lacks a meaningful biological interpretation. Here we used statistical analysis of large-scale sequence data sets and high-throughput computing to explore complementarity between 18S and 28S rRNAs and mRNA 3' UTR sequences. By the analysis of 27,646 full-length 3' UTR sequences from 14 species covering both protozoans and metazoans, we show that the computed 18S rRNA complementarity creates an evolutionarily conserved localization pattern centered around the ribosomal mRNA entry channel, suggesting its biological relevance and functionality. Based on this specific pattern and earlier data showing that post-termination 80S ribosomes are not stably anchored at the stop codon and can migrate in both directions to codons that are cognate to the P-site deacylated tRNA, we propose that the 18S rRNA-mRNA complementarity selectively stabilizes post-termination ribosomal complexes to facilitate ribosome recycling. We thus demonstrate that the complementarity between 18S rRNA and 3' UTRs has a non-random nature and very likely carries information with a regulatory potential for translational control.


Asunto(s)
Regiones no Traducidas 3' , Biosíntesis de Proteínas/fisiología , ARN Ribosómico/fisiología , Regiones Terminadoras Genéticas , Animales , Codón , ARN Ribosómico/química
19.
RNA ; 22(4): 542-58, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26822200

RESUMEN

Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Sistemas de Lectura Abierta , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ARN
20.
Nucleic Acids Res ; 44(22): 10772-10788, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27924037

RESUMEN

The 12-subunit mammalian eIF3 is the largest and most complex translation initiation factor and has been implicated in numerous steps of translation initiation, termination and ribosomal recycling. Imbalanced eIF3 expression levels are observed in various types of cancer and developmental disorders, but the consequences of altered eIF3 subunit expression on its overall structure and composition, and on translation in general, remain unclear. We present the first complete in vivo study monitoring the effects of RNAi knockdown of each subunit of human eIF3 on its function, subunit balance and integrity. We show that the eIF3b and octameric eIF3a subunits serve as the nucleation core around which other subunits assemble in an ordered way into two interconnected modules: the yeast-like core and the octamer, respectively. In the absence of eIF3b neither module forms in vivo, whereas eIF3d knock-down results in severe proliferation defects with no impact on eIF3 integrity. Disrupting the octamer produces an array of subcomplexes with potential roles in translational regulation. This study, outlining the mechanism of eIF3 assembly and illustrating how imbalanced expression of eIF3 subunits impacts the factor's overall expression profile, thus provides a comprehensive guide to the human eIF3 complex and to the relationship between eIF3 misregulation and cancer.


Asunto(s)
Factor 3 de Iniciación Eucariótica/fisiología , Complejos Multiproteicos/metabolismo , Proliferación Celular , Regulación hacia Abajo , Células HeLa , Humanos , Multimerización de Proteína , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA