Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(7): 2527-2551, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-36976907

RESUMEN

Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here, we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker colocalization, gene silencing, and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by CME in BICs and suggests a role for M. oryzae effectors in coopting plant endocytosis.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología
2.
New Phytol ; 241(3): 1266-1276, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984076

RESUMEN

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.


Asunto(s)
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Bangladesh/epidemiología , Zambia/epidemiología , Magnaporthe/genética , Cromosomas , Enfermedades de las Plantas/microbiología
3.
Phytopathology ; 114(1): 220-225, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37486092

RESUMEN

Wheat blast, caused by the Pyricularia oryzae Triticum lineage (PoT), first emerged in Brazil and quickly spread to neighboring countries. Its recent appearance in Bangladesh and Zambia highlights a need to understand the disease's population biology and epidemiology so as to mitigate pandemic outbreaks. Current knowledge is mostly based on characterizations of Brazilian wheat blast isolates and comparison with isolates from non-wheat, endemic grasses. These foregoing studies concluded that the wheat blast population lacks host specificity and, as a result, undergoes extensive gene flow with populations infecting non-wheat hosts. Additionally, based on genetic similarity between wheat blast and isolates infecting Urochloa species, it was proposed that the disease originally emerged via a host jump from this grass and that Urochloa likely plays a central role in wheat blast epidemiology owing to its widespread use as a pasture grass. However, due to inconsistencies with broader phylogenetic studies, we suspected that these seminal studies had not actually sampled the populations normally found on endemic grasses and, instead, had repeatedly isolated members of PoT and the related Lolium pathogen lineage (PoL1). Re-analysis of the Brazilian data as part of a comprehensive, global, phylogenomic dataset that included a small number of South American isolates sampled away from wheat confirmed our suspicion and identified four new P. oryzae lineages on grass hosts. As a result, the conclusions underpinning current understanding in wheat blast's evolution, population biology, and epidemiology are unsubstantiated and could be equivocal.


Asunto(s)
Ascomicetos , Magnaporthe , Triticum , Triticum/genética , Filogenia , Enfermedades de las Plantas/genética , Poaceae
4.
Plant Dis ; 107(8): 2407-2416, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36691278

RESUMEN

Wheat blast, caused by the fungus Magnaporthe oryzae Triticum pathotype (MoT), is a devastating disease affecting South America, Bangladesh, and Zambia. Resistance to wheat blast has strongly relied on the 2NvS translocation; however, newer MoT isolates have increased aggressiveness, threatening the 2NvS translocation's effectiveness and durability. To identify genomic regions associated with wheat blast resistance, we performed a quantitative trait loci (QTL) mapping study using 187 double-haploid (DH) lines from a cross between the Brazilian wheat cultivars 'TBIO Alvorada' and 'TBIO Sossego', which are moderately resistant and susceptible to blast, respectively. The DH population was evaluated in a greenhouse in Brazil and Bolivia, and field conditions in Bolivia. Contrasting models best explained the relationship between traits evaluated according to differences in disease levels and the presence of the 2NvS. A large effect-locus, derived from 'TBIO Sossego', was identified on chromosome 2AS, which was confirmed to be 2NvS translocation and explained 33.5 to 82.4% of the phenotypic variance. Additional significant loci were identified on 5AL, 1DS, 4DS, 5DL, and 6DL chromosome arms with phenotypic variance <6%, but they were not consistent across trait-environment combinations. QTL pyramiding analyses showed that some specific loci had an additive effect when combined with the 2NvS, suggesting that stacking multiple loci may be an effective strategy to help manage wheat blast. The markers associated with the 2NvS can be used as dominant diagnostic markers for this alien translocation. Additional characterization of these loci using a broader set of MoT isolates is critical to validate their effectiveness against current MoT populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Triticum/microbiología , Mapeo Cromosómico , Brasil
5.
Plant Biotechnol J ; 20(9): 1819-1832, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35656643

RESUMEN

Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress-associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non-transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.


Asunto(s)
Arabidopsis , Termotolerancia , Arabidopsis/genética , Grano Comestible/genética , Oxidación-Reducción , Termotolerancia/genética , Zea mays/genética
6.
PLoS Genet ; 15(9): e1008272, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513573

RESUMEN

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


Asunto(s)
Micosis/genética , Enfermedades de las Plantas/genética , Triticum/genética , Ascomicetos/genética , Cromosomas Fúngicos , Reordenamiento Génico/genética , Genoma Fúngico/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Poaceae/genética , Factores de Transcripción/genética
7.
Plant Dis ; 106(6): 1700-1712, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34931892

RESUMEN

Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Ascomicetos , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Triticum/genética
8.
Plant Dis ; 105(1): 96-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197378

RESUMEN

Epidemics of wheat blast, caused the Triticum pathotype of Magnaporthe oryzae, were studied in the Santa Cruz del la Sierra region of Bolivia to quantify and compare the temporal dynamics of the disease under different growing conditions. Six plots of a susceptible wheat cultivar were planted at Cuatro Cañadas (CC), Okinawa 1 (OK1), and Okinawa 2 (OK2) in 2015. Spike blast incidence (INC) and severity (SEV) and leaf blast severity (LEAF) were quantified in each plot at regular intervals on a 10 × 10 grid (n = 100 clusters of spikes), beginning at head emergence (Feekes growth stage 10.5), for a total of nine assessments at CC, six at OK1, and six at OK2. Spike blast increased over time for 20 to 30 days before approaching a mean INC of 100% and a mean SEV of 60 to 75%. The logistic model was the most appropriate for describing the temporal dynamics of spike blast. The highest absolute rates of disease increase occurred earliest at OK1 and latest at OK2, and in all cases it coincided with major rain events. Estimated y0 values (initial blast intensity) were significantly (P < 0.05) higher at OK1 than at CC or OK2, whereas rL values (the logistic rate parameter) were significantly higher at OK2 than at CC or OK1. It took about 10 fewer days for SEV to reach 10, 15, or 20% at OK1 compared with OK2 and CC. Based on survival analyses, the survivor functions for time to 10, 15 and 20% SEV (ts) were significantly different between OK1 and the other locations, with the probabilities of SEV reaching the thresholds being highest at OK1. LEAF at 21 days after Feekes 10.5 had a significant effect on ts at OK1. For every 5% increase in LEAF, the chance of SEV reaching the thresholds by day 21 increased by 30 to 55%.


Asunto(s)
Epidemias , Magnaporthe , Ascomicetos , Bolivia , Enfermedades de las Plantas , Triticum
9.
Plant Dis ; 104(1): 35-43, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31660799

RESUMEN

Wheat head blast (WHB), caused by the fungus Magnaporthe oryzae pathotype triticum, is a devastating disease affecting South America and South Asia. Despite 30 years of intensive effort, the 2NVS translocation from Aegilops ventricosa contains the only useful source of resistance to WHB effective against M. oryzae triticum isolates. The objective of this study was to identify non-2NVS sources of resistance to WHB among elite cultivars, breeding lines, landraces, and wild-relative accessions. Over 780 accessions were evaluated under field and greenhouse conditions in Bolivia, greenhouse conditions in Brazil, and at two biosafety level-3 laboratories in the United States. The M. oryzae triticum isolates B-71 (2012), 008 (2015), and 16MoT001 (2016) were used for controlled experiments, while isolate 008 was used for field experiments. Resistant and susceptible checks were included in all experiments. Under field conditions, susceptible spreaders were inoculated at the tillering stage to guarantee sufficient inoculum. Disease incidence and severity were evaluated as the average rating for each 1-m-row plot. Under controlled conditions, heads were inoculated after full emergence and individually rated for percentage of diseased spikelets. The diagnostic marker Ventriup-LN2 was used to test for the presence of the 2NVS translocation. Four non-2NVS spring wheat International Maize and Wheat Improvement Center breeding lines (CM22, CM49, CM52, and CM61) and four wheat wild-relatives (A. tauschii TA10142, TA1624, TA1667, and TA10140) were identified as resistant (<5% of severity) or moderately resistant (5 to <25% severity) to WHB. Experiments conducted at the seedling stage showed little correlation with disease severity at the head stage. M. oryzae triticum isolate 16MoT001 was significantly more aggressive against 2NVS-based varieties. The low frequency of WHB resistance and the increase in aggressiveness of newer M. oryzae triticum isolates highlight the threat that the disease poses to wheat production worldwide and the urgent need to identify and characterize new resistance genes that can be used in breeding for durably resistant varieties.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Asia , Bolivia , Brasil , Cruzamiento , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología
10.
Phytopathology ; 109(4): 509-511, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30565503

RESUMEN

This is a response to a recent Letter to the Editor of Phytopathology, in which Gupta et al. (2019) caution against the indiscriminate use of the MoT3 diagnostic assay that distinguishes isolates of Magnaporthe oryzae in the Triticum lineage from those that do not cause aggressive wheat blast. We confirm that the assay does reliably distinguish between wheat and rice isolates from Bangladesh and worldwide, as described in the original paper by Pieck et al. (2017) . We have been unable to reproduce the equally intense amplification of WB12 and WB12-like sequences reported in Figure 1 of the Letter. Other data presented by Gupta et al. (2019) support the specificity of the MoT3 assay. Therefore, cautions beyond those always associated with accurate reproduction of diagnostic assays are unwarranted.

11.
Plant Dis ; 102(12): 2550-2559, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30320534

RESUMEN

Wheat blast, caused by the Magnaporthe oryzae Triticum pathotype, is an economically important fungal disease of wheat. Wheat blast symptoms are similar to Fusarium head scab and can cause confusion in the field. Currently, no in-field diagnostic exists for M. oryzae Triticum. Loop-mediated isothermal amplification (LAMP) primers were designed to target the PoT2 and MoT3 loci, previously shown to be specific for M. oryzae and M. oryzae Triticum, respectively. Specificity was determined using 158 M. oryzae strains collected from infected wheat and other grasses and representing geographic and temporal variation. Negative controls included 50 Fusarium spp. isolates. Sensitivity was assessed using 10-fold serial dilutions of M. oryzae Triticum gDNA. PoT2- and MoT3-based assays showed high specificity for M. oryzae and M. oryzae Triticum, respectively, and sensitivity to approximately 5 pg of DNA per reaction. PoT2 and MoT3 assays were tested on M. oryzae Triticum-infected wheat seed and spikes and identified M. oryzae and M. oryzae Triticum, respectively, using a field DNA extraction kit and the portable Genie II system. The mitochondrial NADH-dehydrogenase (nad5) gene, an internal control for plant DNA, was multiplexed with PoT2 and MoT3 and showed results comparable with individual assays. These results show applicability for M. oryzae Triticum field surveillance, as well as identifying nonwheat species that may serve as a reservoir or source of inoculum for nearby wheat fields.


Asunto(s)
Magnaporthe/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Cartilla de ADN/genética , ADN de Hongos/genética , ADN Mitocondrial/genética , ADN de Plantas/genética , Flores/microbiología , Fusarium/genética , Fusarium/aislamiento & purificación , Sitios Genéticos , Magnaporthe/genética , Semillas/microbiología , Sensibilidad y Especificidad , Especificidad de la Especie
12.
Mol Plant Microbe Interact ; 30(10): 803-812, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28677493

RESUMEN

Rice blast disease caused by Magnaporthe oryzae is one of the most destructive diseases of rice. Field isolates of M. oryzae rapidly adapt to their hosts and climate. Tracking the genetic and pathogenic variability of field isolates is essential to understand how M. oryzae interacts with hosts and environments. In this study, a total of 1,022 United States field isolates collected from 1959 to 2015 were analyzed for pathogenicity toward eight international rice differentials. A subset of 457 isolates was genotyped with 10 polymorphic simple sequence repeat (SSR) markers. The average polymorphism information content value of markers was 0.55, suggesting that the SSR markers were highly informative to capture the population variances. Six genetic clusters were identified by both STRUCTURE and discriminant analysis of principal components methods. Overall, Nei's diversity of M. oryzae in the United States was 0.53, which is higher than previously reported in a world rice blast collection (0.19). The observed subdivision was associated with collection time periods but not with geographic origin of the isolates. Races such as IC-17, IE-1, and IB-49 have been identified across almost all collection periods and all clusters; races such as IA-1, IB-17, and IH-1 have a much higher frequency in certain periods and clusters. Both genomic and pathogenicity changes of United States blast isolates were associated with collection year, suggesting that hosts are a driving force for the genomic variability of rice blast fungus.


Asunto(s)
Oryza/microbiología , Enfermedades de las Plantas/estadística & datos numéricos , Análisis Discriminante , Marcadores Genéticos , Variación Genética , Genotipo , Desequilibrio de Ligamiento/genética , Magnaporthe/genética , Magnaporthe/patogenicidad , Repeticiones de Microsatélite/genética , Análisis de Componente Principal , Reproducción Asexuada , Factores de Tiempo , Estados Unidos , Virulencia
13.
Mol Plant Microbe Interact ; 30(7): 515-516, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28398839

RESUMEN

Reader Comments | Submit a Comment The white paper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on nonsustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Abastecimiento de Alimentos , Investigación Biomédica Traslacional/métodos , Biotecnología/métodos , Cambio Climático , Productos Agrícolas/microbiología , Productos Agrícolas/parasitología , Humanos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología
14.
Plant Dis ; 101(1): 103-109, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30682315

RESUMEN

Wheat blast has emerged as a major threat to wheat production in South America. Although originally restricted to Brazil, the disease has since been observed in the neighboring countries of Argentina, Bolivia, and Paraguay and recently the pathogen, Magnaporthe oryzae Triticum pathotype, was isolated from infected wheat in Bangladesh. There is growing concern that the pathogen may continue to spread to other parts of the world, including the United States, where several M. oryzae pathotypes are endemic. M. oryzae pathotypes are morphologically indistinguishable and, therefore, must be characterized genotypically. Symptoms of wheat blast include bleaching of the head, which closely resembles the symptoms of Fusarium head blight, further complicating efforts to monitor for the presence of the pathogen in the field. We used a genomics-based approach to identify molecular markers unique to the Triticum pathotype of M. oryzae. One of these markers, MoT3, was selected for the development of a polymerase chain reaction (PCR)-based diagnostic assay that was evaluated for specificity using DNA from 284 M. oryzae isolates collected from a diverse array of host species. Conventional PCR primers were designed to amplify a 361-bp product, and the protocol consistently amplified from as little as 0.1 ng of purified DNA. The specificity of the MoT3-based assay was also evaluated using Fusarium spp. DNA, from which no amplicons were detected.

15.
Plant Dis ; 101(5): 684-692, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30678560

RESUMEN

Wheat blast is a devastating disease that was first identified in Brazil and has subsequently spread to surrounding countries in South America. In May 2011, disease scouting in a University of Kentucky wheat trial plot in Princeton, KY identified a single plant with disease symptoms that differed from the Fusarium head blight that was present in surrounding wheat. The plant in question bore a single diseased head that was bleached yellow from a point about one-third up the rachis to the tip. A gray mycelial mass was observed at the boundary of the healthy tissue and microscopic examination of this material revealed pyriform spores consistent with a Magnaporthe sp. The pathogen was subsequently identified as Magnaporthe oryzae through amplification and sequencing of molecular markers, and genome sequencing revealed that the U.S. wheat blast isolate was most closely related to an M. oryzae strain isolated from annual ryegrass in 2002 and quite distantly related to M. oryzae strains causing wheat blast in South America. The suspect isolate was pathogenic to wheat, as indicated by growth chamber inoculation tests. We conclude that this first occurrence of wheat blast in the United States was most likely caused by a strain that evolved from an endemic Lolium-infecting pathogen and not by an exotic introduction from South America. Moreover, we show that M. oryzae strains capable of infecting wheat have existed in the United States for at least 16 years. Finally, evidence is presented that the environmental conditions in Princeton during the spring of 2011 were unusually conducive to the early production of blast inoculum.

16.
Plant Biotechnol J ; 14(1): 4-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26242818

RESUMEN

India has more than 215 million food-insecure people, many of whom are farmers. Genetically modified (GM) crops have the potential to alleviate this problem by increasing food supplies and strengthening farmer livelihoods. For this to occur, two factors are critical: (i) a change in the regulatory status of GM crops, and (ii) consumer acceptance of GM foods. There are generally two classifications of GM crops based on how they are bred: cisgenically bred, containing only DNA sequences from sexually compatible organisms; and transgenically bred, including DNA sequences from sexually incompatible organisms. Consumers may view cisgenic foods as more natural than those produced via transgenesis, thus influencing consumer acceptance. This premise was the catalyst for our study--would Indian consumers accept cisgenically bred rice and if so, how would they value cisgenics compared to conventionally bred rice, GM-labelled rice and 'no fungicide' rice? In this willingness-to-pay study, respondents did not view cisgenic and GM rice differently. However, participants were willing-to-pay a premium for any aforementioned rice with a 'no fungicide' attribute, which cisgenics and GM could provide. Although not significantly different (P = 0.16), 76% and 73% of respondents stated a willingness-to-consume GM and cisgenic foods, respectively.


Asunto(s)
Participación de la Comunidad , Oryza/genética , Humanos , India , Plantas Modificadas Genéticamente , Encuestas y Cuestionarios
17.
Plant Dis ; 100(10): 1979-1987, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30683008

RESUMEN

Wheat blast, caused by the Triticum pathotype of Magnaporthe oryzae, is an emerging disease considered to be a limiting factor to wheat production in various countries. Given the importance of wheat blast as a high-consequence plant disease, weather-based infection models were used to estimate the probabilities of M. oryzae Triticum establishment and wheat blast outbreaks in the United States. The models identified significant disease risk in some areas. With the threshold levels used, the models predicted that the climate was adequate for maintaining M. oryzae Triticum populations in 40% of winter wheat production areas of the United States. Disease outbreak threshold levels were only reached in 25% of the country. In Louisiana, Mississippi, and Florida, the probability of years suitable for outbreaks was greater than 70%. The models generated in this study should provide the foundation for more advanced models in the future, and the results reported could be used to prioritize research efforts regarding the biology of M. oryzae Triticum and the epidemiology of the wheat blast disease.

18.
Mol Plant Microbe Interact ; 28(2): 107-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25390188

RESUMEN

As part of a large-scale project whose goal was to identify candidate effector proteins in Magnaporthe oryzae, we developed a suite of vectors that facilitate high-throughput protein localization experiments in fungi. These vectors utilize Gateway recombinational cloning to place a gene's promoter and coding sequences upstream and in frame with enhanced cyan fluorescent protein, green fluorescent protein (GFP), monomeric red fluorescence protein (mRFP), and yellow fluorescent protein or a nucleus-targeted mCHERRY variant. The respective Gateway cassettes were incorporated into Agrobacterium-based plasmids to allow efficient fungal transformation using hygromycin or geneticin resistance selection. mRFP proved to be more sensitive than the GFP spectral variants for monitoring proteins secreted in planta; and extensive testing showed that Gateway-derived fusion proteins produced localization patterns identical to their "directly fused" counterparts. Use of plasmid for fungal protein localization (pFPL) vectors with two different selectable markers provided a convenient way to label fungal cells with different fluorescent proteins. We demonstrate the utility of the pFPL vectors for identifying candidate effector proteins and we highlight a number of important factors that must be taken into consideration when screening for proteins that are translocated across the host plasma membrane.


Asunto(s)
Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/microbiología , Transporte de Proteínas/fisiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/fisiología , Clonación Molecular , Citoplasma/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Magnaporthe/citología , Oryza/citología , Oryza/metabolismo , Células Vegetales , Plásmidos/genética , Transformación Genética
19.
Plant Cell ; 24(11): 4748-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23204406

RESUMEN

Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/fisiología , Oryza/inmunología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Bases , Transporte Biológico , Resistencia a la Enfermedad , Proteínas Fúngicas/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Magnaporthe/patogenicidad , Oryza/genética , Oryza/metabolismo , Fenotipo , Enfermedades de las Plantas/inmunología , Hojas de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Transporte de Proteínas , Proteolisis , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
20.
PLoS Pathog ; 7(7): e1002147, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21829350

RESUMEN

Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/fisiología , Genoma Fúngico/fisiología , Magnaporthe , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Secuencia de Bases , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Magnaporthe/genética , Magnaporthe/metabolismo , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA